• Title/Summary/Keyword: Slice

Search Result 980, Processing Time 0.032 seconds

Network Slice Selection Function on M-CORD (M-CORD 기반의 네트워크 슬라이스 선택 기능)

  • Rivera, Javier Diaz;Khan, Talha Ahmed;Asif, Mehmood;Song, Wang-Cheol
    • KNOM Review
    • /
    • v.21 no.2
    • /
    • pp.35-45
    • /
    • 2018
  • As Network Slicing functionality gets applied to mobile networking, a mechanism that enables the selection of network slices becomes indispensable. Following the 3GPP Technical Specification for the 5G Architecture, the inclusion of the Network Slice Selection Function (NSSF) in order to leverage the process of slice selection is apparent. However, actual implementation of this network function needs to deal with the dynamic changes of network instances, due to this, a platform that supports the orchestration of Virtual Network Functions (VNF) is required. Our proposed solution include the use of the Central Office Rearchitected as a Data Center (CORD) platform, with the specified profile for mobile networks (M-CORD) that integrates a service orchestrator (XOS) alongside solutions oriented to Software Defined Networking (SDN), Network Function Virtualization (VNF) and virtual machine management through OpenStack, in order to provide the right ecosystem where our implementation of NSSF can obtain slice information dynamically by relying on synchronization between back-end services and network function instances.

Noise Level Evaluation According to Slice Thickness Change in Magnetic Resonance T2 Weighted Image of Multiple Sclerosis Disease (다발성 경화증 질환의 자기공명 T2 강조영상에서 단면 두께 변화에 따른 잡음 평가)

  • Hong, Inki;Park, Minji;Kang, Seong-Hyeon;Lee, Youngjin
    • Journal of radiological science and technology
    • /
    • v.44 no.4
    • /
    • pp.327-333
    • /
    • 2021
  • Magnetic resonance imaging(MRI) uses strong magnetic field to image the cross-section of human body and has excellent image quality with no risk of radiation exposure. Because of above-mentioned advantages, MRI has been widely used in clinical fields. However, the noise generated in MRI degrades the quality of medical images and has a negative effect on quick and accurate diagnosis. In particular, examining a object with a detailed structure such as brain, image quality degradation becomes a problem for diagnosis. Therefore, in this study, we acquired T2 weighted 3D data of multiple sclerosis disease using BrainWeb simulation program, and used quantitative evaluation factors to find appropriate slice thickness among 1, 3, 5, and 7 mm. Coefficient of variation and contrast to noise ratio were calculated to evaluate the noise level, and root mean square error and peak signal to noise ratio were used to evaluate the similarity with the reference image. As a result, the noise level decreased as the slice thickness increased, while the similarity decreased after 5 mm. In conclusion, as the slice thickness increases, the noise is reduced and the image quality is improved. However, since the edge signal is lost due to overlapped signal, it is considered that selecting appropriate slice thickness is necessary.

IMRT optimization on multiple slice using gradient based algorithm (Gradient based algorithm을 이용한 multiple slice IMRT optimization)

  • Lee, Byung-Yong;Cho, Byung-Chul;Lee, Seok;Jung, Won-Kyun;An, Seung-Do;Choi, Eun-Kyung;Kim, Jong-Hoon;Jang, Hye-Sook
    • Progress in Medical Physics
    • /
    • v.9 no.4
    • /
    • pp.201-206
    • /
    • 1998
  • IMRT optimization method on multiple slice has been developed by using gradient based algorithm. On about 10-30 CT slices including treatment region of a patient, dose optimization has been performed slice by slice to meet the condition that each organ should be exposed below maximum tolerable doses and that the tumor dose within the range of 100$\pm$5 %. Field size was limited to 8$\times$8 cm$^2$ and in this condition, beam divergence was not taken into account to calculate dose distribution. Total dose distribution was calculated by superposing each beamlet whose dose distribution had been precalculated. In order to investigate beam number dependency, dose optimization was performed for one, three, five, seven, and nine coplanar beams and then each optimization index was evaluated. It is found that optimization time was proportional to number of slices to be optimized, and the most efficient plan was obtained from the case of three-to-seven incident beams with respect to calculation time and optimization index. In conclusion, dose optimization of multiple slice was able to be obtained by repeating dose optimization of single slice under condition that the beam size is not too large to ignore beam divergence. And it turns out that result of dose optimization was so sensitive to the position of isocenter that some method to optimize isocenter position is needed to improve it.

  • PDF

Clinical usefulness of facial soft tissues thickness measurement using 3D computed tomographic images (3차원 전산화단층촬영 영상을 이용한 안면 연조직 두께 계측의 임상적 유용성)

  • Jeong Ho-Gul;Kim Kee-Deog;Han Seung-Ho;Hu Kyung-Seok;Lee Jae-Bum;Park Hyok;Choi Seong-Ho;Kim Chong-Kwan;Park Chang-Seo
    • Imaging Science in Dentistry
    • /
    • v.36 no.2
    • /
    • pp.89-94
    • /
    • 2006
  • Purpose : To evaluate clinical usefulness of facial soft tissue thickness measurement using 3D computed tomographic images. Materials and Methods : One cadaver that had sound facial soft tissues was chosen for the study. The cadaver was scanned with a Helical CT under following scanning protocols about slice thickness and table speed; 3 mm and 3 mm/sec, 5 mm and 5 mm/sec, 7 mm and 7 mm/sec. The acquired data were reconstructed 1.5, 2.5, 3.5 mm reconstruction interval respectively and the images were transferred to a personal computer. Using a program developed to measure facial soft tissue thickness in 3D image, the facial soft tissue thickness was measured. After the ten-time repeation of the measurement for ten times, repeated measure analysis of variance (ANOVA) was adopted to compare and analyze the measurements using the three scanning protocols. Comparison according to the areas was analyzed by Mann-Whitney test. Results : There were no statistically significant intraobserver differences in the measurements of the facial soft tissue thickness using the three scanning protocols (p>0.05). There were no statistically significant differences between measurements in the 3 mm slice thickness and those in the 5 mm, 7 mm slice thickness (p>0.05). There were statistical differences in the 14 of the total 30 measured points in the 5 mm slice thickness and 22 in the 7 mm slice thickness. Conclusion : The facial soft tissue thickness measurement using 3D images of 7 mm slice thickness is acceptable clinically, but those of 5 mm slice thickness is recommended for the more accurate measurement.

  • PDF

Impact of Computed Tomography Slice Thickness on Intensity Modulated Radiation Therapy Plan (전산화단층촬영 슬라이스 두께가 세기변조방사선치료계획에 미치는 영향)

  • Lee, Seoung-Jun;Kim, Jae-Chul
    • Radiation Oncology Journal
    • /
    • v.24 no.4
    • /
    • pp.285-293
    • /
    • 2006
  • $\underline{Purpose}$: This study was to search the optimal slice thickness of computed tomography (CT) in an intensity modulated radiation therapy plan through changing the slice thickness and comparing the change of the calculated absorbed dose with measured absorbed dose. $\underline{Materials\;and\;Methods}$: An intensity modulated radiation therapy plan for a head and neck cancer patient was done, first of all. Then CT with various ranges of slice thickness ($0.125{\sim}1.0\;cm$) for a head and neck anthropomorphic phantom was done and the images were reconstructed. The plan parameters obtained from the plan of the head and neck cancer patient was applied into the reconstructed images of the phantom and then absorbed doses were calculated. Films were inserted into the phantom, and irradiated with 6 MV X-ray with the same beam data obtained from the head and neck cancer patient. Films were then scanned and isodoses were measured with the use of film measurement software and were compared with the calculated isodeses. $\underline{Results}$: As the slice thickness of CT decreased, the volume of the phantom and the maximum absorbed dose increased. As the slice thickness of CT changed from 0.125 to 1.0 cm, the maximum absorbed dose changed ${\sim}5%$. The difference between the measured and calculated volume of the phantom was small ($3.7{\sim}3.8%$) when the slice thickness of CT was 0.25 cm or less. The difference between the measured and calculated dose was small ($0.35{\sim}1.40%$) when the slice thickness of CT was 0.25 cm or less. $\underline{Conclusion}$: Because the difference between the measured and calculated dose in a head and neck phantom was small and the difference between the measured and calculated volume was small when the slice thickness of CT was 0.25 cm or less, we suggest that the slice thickness of CT should be 0.25 cm or less for an optimal intensity modulated radiation therapy plan.

SLICE REGULAR BESOV SPACES OF HYPERHOLOMORPHIC FUNCTIONS AND COMPOSITION OPERATORS

  • Kumar, Sanjay;Manzoor, Khalid
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.651-669
    • /
    • 2021
  • In this paper, we investigate some basic results on the slice regular Besov spaces of hyperholomorphic functions on the unit ball 𝔹. We also characterize the boundedness, compactness and find the essential norm estimates for composition operators between these spaces.

Comparison of Radiation Doses between 64-slice Single Source and 128-slice Dual Source CT Coronary Angiography in patient (64-slice single source CT와 128-slice dual source CT를 이용한 관상동맥 조영 검사 시 환자선량 비교)

  • Kang, Yeong-Han
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.2
    • /
    • pp.129-136
    • /
    • 2012
  • The purpose of this study was to estimate radiation doses from 64-slice single source Computed Tomography(SSCT) coronary angiography(CA) and 128-slice dual source Computed Tomography(DSCT). With SSCT CA, the effective dose averaged approximately 13.86 mSv when two dose modulation was not. The mean effective dose for DSCT CA with retrospectively gated helical(RGH) technique was 11.87 mSv, when prospective ECG gating transverse(PGT) without dose modulation technique was 5.61 mSv. The one with dose modulation in PGT technique and flash mode were 3.04 mSv and flash mode was 0.98 mSv respectively. The lifetime attributable risk(LAR) of cancer incidence from SSCT RGH mode averaged approximately 1 for 1,176, and DSCT averaged 1 for 1,960(RGH mode), 1 for 3,030(PGT without modulation), 1 for 5,882(PGT with modulation). Because of CTCA is associated with non-negligible risk of cancer. Doses can be reduced by application PGT, FLASH than RGH using DSCT.

Automatic Tumor Segmentation Method using Symmetry Analysis and Level Set Algorithm in MR Brain Image (대칭성 분석과 레벨셋을 이용한 자기공명 뇌영상의 자동 종양 영역 분할 방법)

  • Kim, Bo-Ram;Park, Keun-Hye;Kim, Wook-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.4
    • /
    • pp.267-273
    • /
    • 2011
  • In this paper, we proposed the method to detect brain tumor region in MR images. Our method is composed of 3 parts, detection of tumor slice, detection of tumor region and tumor boundary detection. In the tumor slice detection step, a slice which contains tumor regions is distinguished using symmetric analysis in 3D brain volume. The tumor region detection step is the process to segment the tumor region in the slice distinguished as a tumor slice. And tumor region is finally detected, using spatial feature and symmetric analysis based on the cluster information. The process for detecting tumor slice and tumor region have advantages which are robust for noise and requires less computational time, using the knowledge of the brain tumor and cluster-based on symmetric analysis. And we use the level set method with fast marching algorithm to detect the tumor boundary. It is performed to find the tumor boundary for all other slices using the initial seeds derived from the previous or later slice until the tumor region is vanished. It requires less computational time because every procedure is not performed for all slices.

Neuroprotective Effects of Methanol Extract of Sophorae Subprostratae Radix on Glutamate Excitotoxicity in PC12 Cells and Organotypic Hippocampal Slice Cultures

  • Kim, Soo-Man;Shim, Eun-Sheb;Kim, Bum-Hoi;Sohn, Young-Joo;Kim, Sung-Hoon;Jung, Hyuk-Sang;Sohn, Nak-Won
    • The Journal of Korean Medicine
    • /
    • v.29 no.5
    • /
    • pp.29-40
    • /
    • 2008
  • Objectives : It has been reported that Sophorae Subprostratae Radix (SSR) has a neuroprotective effect on cerebral ischemia in animals. In the present study, the authors investigated the neuroprotective effect of SSR on glutamate excitotoxicity. Glutamate excitotoxicity was induced by using NMDA, AMPA, and KA in PC12 cells and in organotypic hippocampal slice cultures. Methods :Methanolic extract of SSR was added at 0.5, 5, and 50 ${\mu}$g/ml to culture media for 24 hours. The effects of SSR were evaluated by measuring of cell viability, PI-stained neuronal cell death, TUNEL-positive cells, and MAP-2 immunoreactivity. Results : SSR increased PC12 cell viabilities significantly against AMPA-induced excitotoxicity, but not against NMDA-induced or KA-induced excitotoxicity. In organotypic hippocampal slice cultures damaged by NMDA-induced excitotoxicity, SSR attenuated neuronal cell death significantly in the CA1, CA3, and DG hippocampal regions and reduced TUNEL-positive cells significantly in CA1 and DG regions. In organotypic hippocampal slice cultures damaged by AMPA-induced excitotoxicity, SSR attenuated neuronal cell death and reduced TUNEL-positive cell numbers significantly in the CA1 and DG regions. In organotypic hippocampal slice cultures damaged by KA-induced excitotoxicity, SSR attenuated neuronal cell death significantly in CA3, but did not reduce TUNEL-positive cell numbers in CA1, CA3 or DG. In organotypic hippocampal slice cultures damaged by NMDA-induced excitotoxicity, SSR attenuated pyramidal neuron neurite retraction and degeneration in CA1. Conclusions : These results suggest that the neuroprotective effects of SSR are related to antagonistic effects on the NMDA and AMPA receptors of neuronal cells damaged by excitotoxicity and ischemia.

  • PDF

Direct Slicing with Optimum Number of Contour Points

  • Gupta Tanay;Chandila Parveen Kumar;Tripathi Vyomkesh;Choudhury Asimava Roy
    • International Journal of CAD/CAM
    • /
    • v.4 no.1
    • /
    • pp.33-45
    • /
    • 2004
  • In this work, a rational procedure has been formulated for the selection of points approximating slice contours cut in LOM (Laminated Object manufacturing) with first order approximation. It is suggested that the number of points representing a slice contour can be 'minimised' or 'optmised' by equating the horizontal chordal deviation (HCD) to the user-defined surface form tolerance. It has been shown that such optimization leads to substantial reduction in slice height calculations and NC codes file size for cutting out the slices. Due to optimization, the number of contour points varies from layer to layer, so that points on successive layer contours have to be matched by four sided ruled surface patches and triangular patches. The technological problems associated with the cutting out of triangular patches have been addressed. A robust algorithm has been developed for the determination of slice height for optimum and arbitrary numbers of contour points with different strategies for error calculations. It has been shown that optimisation may even lead to detection and appropriate representation of elusive surface features. An index of optimisation has been defined and calculations of the same have been tabulated.