Impact of Computed Tomography Slice Thickness on Intensity Modulated Radiation Therapy Plan

전산화단층촬영 슬라이스 두께가 세기변조방사선치료계획에 미치는 영향

  • Lee, Seoung-Jun (Department of Radiation Oncology, Kyungpook National University Hospital,) ;
  • Kim, Jae-Chul (Kyungpook National University School of Medicine)
  • 이승준 (경북대학교병원 방사선종양학과) ;
  • 김재철 (경북대학교 의과대학 방사선종양학교실)
  • Published : 2006.12.31

Abstract

$\underline{Purpose}$: This study was to search the optimal slice thickness of computed tomography (CT) in an intensity modulated radiation therapy plan through changing the slice thickness and comparing the change of the calculated absorbed dose with measured absorbed dose. $\underline{Materials\;and\;Methods}$: An intensity modulated radiation therapy plan for a head and neck cancer patient was done, first of all. Then CT with various ranges of slice thickness ($0.125{\sim}1.0\;cm$) for a head and neck anthropomorphic phantom was done and the images were reconstructed. The plan parameters obtained from the plan of the head and neck cancer patient was applied into the reconstructed images of the phantom and then absorbed doses were calculated. Films were inserted into the phantom, and irradiated with 6 MV X-ray with the same beam data obtained from the head and neck cancer patient. Films were then scanned and isodoses were measured with the use of film measurement software and were compared with the calculated isodeses. $\underline{Results}$: As the slice thickness of CT decreased, the volume of the phantom and the maximum absorbed dose increased. As the slice thickness of CT changed from 0.125 to 1.0 cm, the maximum absorbed dose changed ${\sim}5%$. The difference between the measured and calculated volume of the phantom was small ($3.7{\sim}3.8%$) when the slice thickness of CT was 0.25 cm or less. The difference between the measured and calculated dose was small ($0.35{\sim}1.40%$) when the slice thickness of CT was 0.25 cm or less. $\underline{Conclusion}$: Because the difference between the measured and calculated dose in a head and neck phantom was small and the difference between the measured and calculated volume was small when the slice thickness of CT was 0.25 cm or less, we suggest that the slice thickness of CT should be 0.25 cm or less for an optimal intensity modulated radiation therapy plan.

목 적: 세기변조방사선치료계획에서 전산화단층촬영(computed tomography, CT) 영상의 슬라이스 두께를 변화시켜 계산된 흡수선량의 변화를 측정치와 비교함으로써 최적의 CT 슬라이스 두께를 구하고자 하였다. 대상 및 방법: 두경부암 환자에 대한 세기변조방사선치료계획을 우선 시행하였다. 두경부 인체모형팬톰에 대해서 다양한 슬라이스 두께로($0.125{\sim}1.0\;cm$) CT 영상을 획득하여 재구성하였다. 두경부암 환자의 치료계획에서 획득한 빔 및 동적다엽콜리메이터 작동순서 정보를 재구성된 팬톰에 입력하여 흡수선량을 계산하였다. 팬톰에 필름을 삽입하고, 두경부암 환자에서 얻은 동일한 빔 정보로 방사선 조사를 시행하여 흡수선량을 측정하였다. 필름 계측용 소프트웨어를 이용하여 필름의 흡수선량을 분석한 후, 팬톰 CT영상에서 계산된 선량과 비교하였다. 결 과: CT 슬라이스 두께가 작을수록 선량체적히스토그람에서 팬톰의 체적과 팬톰 내 최대선량이 높게 나타났다. 팬톰 내 최대선량은 CT 슬라이스 두께에 따라 ${\sim}5%$의 차이를 보였다. CT 슬라이스 두께 0.25 cm 이하에서 측정선량과 계산선량의 차이가 가장 작았다. 결 론: 세기변조방사선치료계획에서 CT 슬라이스 두께 변화가 흡수선량 및 체적변화의 연관성을 확인하였다. CT 슬라이스 두께가 작을수록 계산선량과 측정선량 간의 차이가 작았으며, 계산 체적과 측정 체적과의 차이도 작았다. 세기변조방사선치료계획에서 실제 인체와 가까운 체적 및 흡수선량 정보를 획득하기 위해서는 CT슬라이스 두께를 0.25 cm 이하로 함이 적절할 것으로 생각된다.

Keywords

References

  1. James MG, Gary E, Avraham E, et al. Implementing IMRT in clinical practice: a joint document of the American society for therapeutic radiology and oncology and the American association of physicists in medicine. Int J Radiat Oncol Biol Phys 2004;58:1616-1634 https://doi.org/10.1016/j.ijrobp.2003.12.008
  2. Kang SK, Cho BC, Park HC, Bae HS. The effect of the CT voltages on the dose calculated by a commercial RTP system. J Korea Med Phys 2004;15:23-29
  3. Dogan N, Leybovich LB, Sethi A. Comparative evaluation of Kodak EDR2 and XV2 films for verification of intensity modulated radiation therapy. Phys Med Biol 2002;47:4121-4130 https://doi.org/10.1088/0031-9155/47/22/314
  4. Mundt AJ, Roeske JC. Intensity modulated radiation therapy- a clinical perspective. Hamilton and London; BC Decker Inc, 2005:83-89
  5. Martin JM. The importance of computed tomography slice thickness in radiographic patient positioning for radiosurgery. Med Phys 1999;26:171-175 https://doi.org/10.1118/1.598500
  6. Berthelet E, Liu M, Truong P, et al. CT slice index and thickness: Impact on organ contouring in radiation treatment planning for prostate cancer. J Appl Clin Med Phys 2003; 4:365-373 https://doi.org/10.1120/1.1621376
  7. Agazaryan N, Solberg TD, Demarco JJ. Patient specific quality assurance for the delivery of intensity modulated radiotherapy. J Appl Clin Med Phys 2003;4:40-49 https://doi.org/10.1120/1.1525243
  8. Ma L, Geis PB, Boyer AL. Quality assurance for dynamic multileaf collimator modulated fields using a fast beam imaging system. Med Phys 1997;24:1213-1220 https://doi.org/10.1118/1.598157
  9. Tsai JS, Wazer DE, Ling MN, et al. Dosimetric verification of the dynamic intensity-modulated radiation therapy of 92 patients. Int J Radiat Oncol Biol Phys 1998;40:1213-1230 https://doi.org/10.1016/S0360-3016(98)00009-1
  10. Xing L, Li JG. Computer verification of fluence map for intensity modulated radiation therapy. Med Phys 2000;27: 2084-2092 https://doi.org/10.1118/1.1289374
  11. MacKenzie MA, Lachaine M, Murray B, Fallone BG, Robinson D, Field GC. Dosimetric verification of inverse planned step and shoot mulitileaf collimator fields from a commercial treatment planning system. J Appl Clin Med Phys 2002;3:97-109 https://doi.org/10.1120/1.1459524
  12. Shin KH, Park SY, Park DH, et al. Patient specific quality assurance of IMRT: quantitative approach using film dosimetry and optimization. J Korean Soc Ther Radiol Oncol 2005;23; 176-185
  13. Papatheodorou S, Rosenwald JC, Zefkili S, Murillo MC, Drouard J, Gaboriaud G. Dose calculation and verification of intensity modulation generated by dynamic multileaf collimators. Med Phys 2000;27:960-971 https://doi.org/10.1118/1.598960
  14. Budgell GJ, Perrin BA, Mott JH, Fairfoul J, Mackay RI. Quantitative analysis of patient-specific dosimetric IMRT verification. Phys Med Biol 2005;50:103-119 https://doi.org/10.1088/0031-9155/50/1/009