• Title/Summary/Keyword: Slaughterhouse wastewater

Search Result 10, Processing Time 0.034 seconds

Slaughterhouse wastewater treatment in a bamboo ring anaerobic fixed-bed reactor

  • Tritt, Wolfgang P.;Kang, Ho
    • Environmental Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.70-75
    • /
    • 2018
  • A pilot scale anaerobic fixed-bed with a reactor volume of $2.8m^3$ was built to treat slaughterhouse wastewater. Bamboo rings were chosen as support media mainly because of their cheaper price in underdeveloped countries. Even with their lower porosity and specific surface, the reactor performance showed a maximum 95% COD removal efficiency at an organic loading rate (OLR) of $1kg\;COD/m^3-d$ with its corresponding hydraulic retention time (HRT) of 7.5 d. At a higher OLR of $4.0kg\;COD/m^3-d$, the COD removal efficiency of 75% was achieved with an HRT of 2 d. No big difference in COD removal efficiencies was found between the reactors operated in both upflow and downflow modes. Their operational behavior and effluent characteristics were similar. The effluent COD/TKN ratio of 6.67 at an OLR of $4.0kg\;COD/m^3-d$ was only marginal acceptable range for a subsequent biological denitrification process. Otherwise carbon supplementation is required at a lower OLR.

Effect of the supernatant reflux position and ratio on the nitrogen removal performance of anaerobic-aerobic slaughterhouse wastewater treatment process

  • Tong, Shuang;Zhao, Yan;Zhu, Ming;Wei, Jing;Zhang, Shaoxiang;Li, Shujie;Sun, Shengdan
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.309-315
    • /
    • 2020
  • Slaughterhouse wastewater (SWW) is characterized as one of the most harmful agriculture and food industrial wastewaters due to its high organic content. The emissions of SWW would cause eutrophication of surface water and pollution of groundwater. This study developed a pilot scale anaerobic-aerobic slaughterhouse wastewater treatment process (AASWWTP) to enhance the chemical oxygen demand (COD) and total nitrogen (TN) removal. The optimum supernatant reflux position and ratio for TN removal were investigated through the modified Box-Behnken design (BBD) experiments. Results showed that COD could be effectively reduced over the whole modified BBD study and the removal efficiency was all higher than 98%. The optimum reflux position and ratio were suggested to be 2 alure and 100%, respectively, where effluent TN concentration was satisfied with the forthcoming Chinese discharge standard of 25 mg/L. Anaerobic digestion and ammonia oxidation were considered as the main approaches for COD and TN removal in the AASWWTP. The results of inorganic nutrients (K+, Na+, Ca2+ and Mg2+) indicated that the SWW was suitable for biological treatment and the correspondingly processes such as AASWWTP should be widely researched and popularized. Therefore, AASWWTP is a promising technology for SWW treatment but more research is needed to further improve the operating efficiency.

A study on the Treatment of Slaughterhouse Wastewater using Curtain Biological Film Contact Process. (커어튼형 생물막 접촉공법에 의한 도축장 폐수 처리에 관한 연구)

  • 이태호;은종극
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.4
    • /
    • pp.14-19
    • /
    • 2000
  • This study was carried out to get efficient of nutrient removal and wastage sludge production minimized effects on the treatment of slaughterhouse wastewater using aerobic curtain biological film contact process. As a results of biofilm attachment experiment aggravation of water quality due to excessive biofilm showed after every 15 days of operating times. The concentration of BOD and COD in the influent were 2500~3000mg/L and 1700~2100mg/L , respectively. The average BOD and CoD were 9mg/L and 17mg/L , respectively. The result of this experiment was wastage sludge did not almost generated and the removal efficiency of nutrients were kept equilibrium.

  • PDF

Comparison of response surface methods for the optimization of an upflow anaerobic sludge blanket for the treatment of slaughterhouse wastewater

  • Chollom, Martha Noro;Rathilal, Sudesh;Swalaha, Feroz Mohammed;Bakare, Babatunde Femi;Tetteh, Emmanuel Kweinor
    • Environmental Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.114-122
    • /
    • 2020
  • This study was aimed at using the Central Composite Design (CCD) and Box-Behnken Design (BBD) to compare the efficiency and to elucidate the main interacting parameters in the upflow anaerobic sludge blanket (UASB) reactor, namely: Organic Loading Rate (OLR), Hydraulic Retention Times (HRT) and pH at a constant temperature of 35℃. Optimum HRT (15 h), OLR (3.5 kg.m-3.d-1) and pH (7) resulted in biogas production of 5,800 mL/d and COD removal of 80.8%. BBD produced a higher desirability efficiency of 94% as compared to the CCD which was 92%. The regression quadratic models developed with high R2 values of 0.961 and 0.978 for both CCD and BBD, respectively, demonstrated that the interaction models could be used to pilot the design space. BBD model developed was more reliable with a higher prediction of biogas production (5,955.4 ± 225.3 mL/d) and COD removal (81.5 ± 1.014%), much close to the experimental results at a 95% confidence level. CCD model predictions was greater in terms of COD removal (82.6 ± 1.06% > 80.8%) and biogas production (4,636.31 mL/d ± 439.81 < 5,800 mL/d) which was less than the experimental results. Therefore, RSM can be adapted for optimizing various wastewater treatment processes.

Assessment of Methane Potential in Hydro-thermal Carbonization reaction of Organic Sludge Using Parallel First Order Kinetics (병열 1차 반응속도식을 이용한 유기성 슬러지 수열탄화 반응온도별 메탄생산퍼텐셜 평가)

  • Oh, Seung-Yong;Yoon, Young-Man
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.2
    • /
    • pp.128-136
    • /
    • 2016
  • BACKGROUND: Hydrothermal carbonization reaction is the thermo-chemical energy conversion technology for producing the solid fuel of high carbon density from organic wastes. The hydrothermal carbonization reaction is accompanied by the thermal hydrolysis reaction which converse particulate organic matters to soluble forms (hydro-thermal hydrolysate). Recently, hydrothermal carbonization is adopted as a pre-treatment technology to improve anaerobic digestion efficiency. This research was carried out to assess the effects of hydro-thermal reaction temperature on the methane potential and anaerobic biodegradability in the thermal hydrolysate of organic sludge generating from the wastewater treatment plant of poultry slaughterhouse .METHODS AND RESULTS: Wastewater treatment sludge cake of poultry slaughterhouse was treated in the different hydro-thermal reaction temperature of 170, 180, 190, 200, and 220℃. Theoretical and experimental methane potential for each hydro-thermal hydrolysate were measured. Then, the organic substance fractions of hydro-thermal hydrolysate were characterized by the optimization of the parallel first order kinetics model. The increase of hydro-thermal reaction temperature from 170℃ to 220℃ caused the enhancement of hydrolysis efficiency. And the methane potential showed the maximum value of 0.381 Nm3 kg-1-VSadded in the hydro-thermal reaction temperature of 190℃. Biodegradable volatile solid(VSB) content have accounted for 66.41% in 170℃, 72.70% in 180℃, 79.78% in 190℃, 67.05% in 200℃, and 70.31% in 220℃, respectively. The persistent VS content increased with hydro-thermal reaction temperature, which occupied 0.18% for 170℃, 2.96% for 180℃, 6.32% for 190℃, 17.52% for 200℃, and 20.55% for 220℃.CONCLUSION: Biodegradable volatile solid showed the highest amount in the hydro-thermal reaction temperature of 190℃, and then, the optimum hydro-thermal reaction temperature for organic sludge was assessed as 190℃ in the aspect of the methane production. The rise of hydro-thermal reaction temperature caused increase of persistent organic matter content.

Distribution Maps for Waste generation using GIS (GIS 이용 폐기물 발생량 분포지도 작성)

  • Kim, Yi-Hyun;Hong, S. Young;Hong, Seung-Gil;Choe, Eunyoung;Nam, Jae Jak;So, Kyu Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.2
    • /
    • pp.55-61
    • /
    • 2010
  • This study was carried out to analyze national and regional distribution of the organic wastes generation and build their distribution maps including food wastes, paper and wood wastes, wastewater and slaughterhouse wastes. The information for the annual waste production was modified using statistics from Ministry of Environment (MOE). Based on waste generation resources data, we established database architecture table about waste generation. The distribution maps for food wastes were built up in both national and regional scales and distribution maps for paper and wood wastes, wastewater and slaughterhouse wastes were also produced, respectively. The distribution maps of waste generation graphically provide the information regarding biomass resources to policy-makers, farmers, general users and it is highly expected to be utilized for policy-making of environmental-friendly agriculture and bioenergy.

Effects of Substrate to Inoculum Ratio on Biochemical Methane Potential in Thermal Hydrolysate of Poultry Slaughterhouse Sludge (기질과 접종액의 비율이 도계 가공장 슬러지 열가수분해액의 메탄생산퍼텐셜에 미치는 영향)

  • Oh, Seung-Yong;Yoon, Young-Man
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.2
    • /
    • pp.121-127
    • /
    • 2016
  • BACKGROUND: Anaerobic digestion is the most feasible technology because not only the energy embedded in organic matters can be recovered, but also they are stabilized while being degraded. This study carried out to improve methane yield of slaughterhouse wastewater treatment sludge cake by the thermal pre-treatment prior to anaerobic digestion.METHODS AND RESULTS: Slaughterhouse wastewater treatment sludge cake was pre-treated by the closed hydrothermal reactor at reaction temperature of 190℃. BMPs (Biochemical methane potential) of the thermal hydrolysate was tested in the different S(Substrate)/I(Inoculum) ratio conditions. COD(Chemical oxygen demand) and SCOD(Soluble chemical oxygen demand) contents of thermal hydrolysate were 10.99% and 10.55%, respectively, then, the 96.00% of COD was remained as a soluble form. The theoretical methane potential of thermal hydrolysate was 0.51 Nm3 kg-1-VSadded. And BMPs were decreased from 0.56 to 0.22 Nm3 kg-1-VSadded when S/I ratio were increased from 0.1 to 2.0 in the VS content basis. Those were decreased from 0.32 to 0.13 Nm3 kg-1-CODadded when S/I ratio were increased from 0.1 to 2.0 based on COD content. The anaerobic degradability of VS basis have showed 196.9%, 102.2%, 80.7%, 67.4%, and 39.4% in S/I ratios of 0.1, 0.3, 0.5, 1.0, and 2.0, respectively. Also the COD of 119.6%, 76.3%, 70.1%, 69.0%, and 43.1% were degraded anaerobically in S/I ratios of 0.1, 0.3, 0.5, 1.0, and 2.0, respectively.CONCLUSION: BMPs obtained in the S/I ratios of 0.1 and 0.3 was overestimated by the residual organic matters remaining at the inoculum. And inhibitory effect was observed in the highest S/I ratio of 2.0. The optimum S/I ratios giving reasonable BMPs might be in the range of 0.5 and 1.0 in S/I ratio. Therefore VS biodegradability of thermal hydrolysate was in 67.4-80.7% and COD biodegradability showed 69.0-70.1%.

Thermophilic Anaerobic Biodegradability of Agro-industrial Biomasses (농축산바이오매스의 고온 혐기성 생분해도 평가)

  • Heo, Nam-Hyo;Kang, Ho;Jeong, Ji-Hyun;Lee, Seung-Heon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.514-517
    • /
    • 2009
  • Anaerobic biodegradability(AB), which can be determined with the ultimate methane yield by the decomposition of organic materials, is one of the important parameters for the design and the operation of anaerobic digestion plant. In this study, Biochemical Methane Potential(BMP) test has been carried out to evaluate the methane yield of agro-industrial biomasses such as cattle manure, Italian ryegrass(IRG), Oats, Rye and Barley as the forage crops, Rush, the sludges produced from milling and slaughterhouse wastewater treatment plant(SMWTP, SSWTP). In the condition of thermophilic anaerobic digestion, the ultimate methane yield and anaerobic biodegradability of forage crops ranged from 0.367 to $0.452LCH_4$/gVS of methane yield with AB having the range of about 77.0 to 87.3%. On the other hand, that of other substrate showed low figures compared with the forage crops because of low VS content and C/N ratio. Therefore, the forage crops could be used as a good substrate to produce much more the methane in anaerobic digestion.

  • PDF

Biochemical Methane Potential of Animal Manure and Cultivated Forage Crops at the Reclaimed Tideland (가축분뇨와 간척지 사료작물의 메탄발생량)

  • Heo, Nam-Hyo;Lee, Seung-Heon;Kim, Byeong-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.79-82
    • /
    • 2008
  • Anaerobic biodegradability(AB), which can be determined with the ultimate methane yield by the decomposition of organic materials, is one of the important parameters for the design and the operation of anaerobic digestion plant. In this study, Biochemical Methane Potential(BMP) test has been carried out to evaluate the methane yield of animal manures, such as pig and cattle slurries, and different forage crops cultivated at the reclaimed tideland, such as maize, sorghum, barley, rye, Italian ryegrass(IRG), rape, rush and sludge produced from slaughterhouse wastewater treatment plant(SWTP). In the ultimate methane yield of animal manure, that of pig slurry(no used a EM) was 407 $mlCH_4/gVS_{fed}$ higher than 242 $mlCH_4/gVS_{fed}$ of cattle slurry. The ultimate methane yield of spike-crop rye was 442.36 $mlCH_4/gVS_{fed}$ the highest among different forage crops, the other showed the value above a methane yield of 300 $mlCH_4/gVS_{fed}$. The forage crop could be used as a good substrate to improve the methane production in anaerobic co-digestion together with animal manure.

  • PDF

Biochemical Methane Potential and Biodegradability of Animal Manure and Cultivated Forage Crops at the Reclaimed Tideland (가축분뇨와 간척지 사료작물의 메탄발생량과 생분해도)

  • Heo, Nam-Hyo;Lee, Seung-Heon;Kim, Byeong-Ki
    • New & Renewable Energy
    • /
    • v.4 no.4
    • /
    • pp.56-64
    • /
    • 2008
  • Anaerobic biodegradability (AB), which can be determined with the ultimate methane yield by the decomposition of organic materials, is one of the important parameters for the design and the operation of anaerobic digestion plant. In this study, Biochemical methane potential (BMP) test has been carried out to evaluate the methane yields of animal manures such as pig and cattle slurries, and different forage crops cultivated at the reclaimed tideland such as maize, sorghum, barley, rye, Italian ryegrass (IRG), rape, rush, and waste sludge produced from slaughterhouse wastewater treatment plant (SSWTP). In the ultimate methane yield and biodegradability of animal manure, those of pig slurry were 345 $mlCH_4/gVS_{fed}$ and 44.7% higher than 247 $mlCH_4/gVS_{fed}$ and 46.4% of cattle slurry (Cat. 2). The ultimate methane yield and biodegradability of spike-crop rye (Rye 1) were 442.36 $mlCH_4/gVS_{fed}$ and 86.5% the highest among different forage crops, those of the other forage crops ranged from 306.6 to 379 $mlCH_4/gVS_{fed}$ of methane yield with the AB having the range of about 60 to 77%. Therefore the forage crops could be used as a good substrate to increase the methane production and to improve the biodegradability in anaerobic co-digestion together with animal manure.

  • PDF