• Title/Summary/Keyword: Slabs

Search Result 1,112, Processing Time 0.025 seconds

Static Test on Aged RC Bridge Slabs Strengthened With TYFO Glassfibers (TYFO 유리섬유로 보강된 노후교량 상판에 대한 정적실험)

  • 송재필;김철우;김기봉;정영수;이광명
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.621-626
    • /
    • 1997
  • Recently, TYFO glassfibers have been used for strengthening n aged RC bridge slabs because of low material cost and easy repairing work. The purpose of this study is to experimentally and analytically investigate the effect of TYFO glassfibers for enhancing the capacity of aged RC bridge slabs. Tes result shows that yield and ultimate strength of RC slabs with TYFO are increased as 11~18% and 25~35% comparing with those for RC slabs without TYFO, respectively, Also, ductility of RC slabs strengthened with TYFO have been significantly increased. Further tests have been performing on aged RC bridge slabs strengthened with carbon fiber strips.

  • PDF

Inelastic Behavior of Continuous Precast Composite Slabs (연속 프리캐스트 합성바닥판의 비탄성 거동)

  • Shim Chang-Su;Chung Young Soo;Min Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.447-450
    • /
    • 2005
  • A prefabricated composite hollow slab with perforated I-beams was suggested for the replacement of deteriorated concrete decks or the construction of new composite bridges with long-span slabs. Composite slabs with embedded I-beams have considerably higher stiffness and strength. For the application of prefabricated composite slabs to bridges, joints between slabs should satisfy the requirements of the ultimate limit state and the serviceability limit state. In this paper, three types of the detail for loop joints were selected and their structural performance in terms of strength and crack control was investigated through static tests on continuous composite slabs. A main parameter was the detail of the joint, such as an ordinary loop joint and loop joint with additional reinforcements. Even though there was no connection of the steel beams at the joints, the loop joints showed good performance in terms of strength. In terms of crack control, the loop joint with additional reinforcements showed better performance. In ultimate limit state, the continuous composite slabs showed good moment redistribution and ductility.

  • PDF

Behaviours of steel-fibre-reinforced ULCC slabs subject to concentrated loading

  • Wang, Jun-Yan;Gao, Xiao-Long;Yan, Jia-Bao
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.407-416
    • /
    • 2019
  • Novel steel fibre reinforced ultra-lightweight cement composite (ULCC) with compressive strength of 87.3MPa and density of $1649kg/m^3$ was developed for the flat slabs in civil buildings. This paper investigated structural behaviours of ULCC flat slabs according to a 4-specimen test program under concentrated loading and some reported test results. The investigated governing parameters on the structural behaviours of the ULCC slabs include volume fraction of the steel fibre and the patch loading area. The test results revealed that ULCC flat slabs with and without flexure reinforcement failed in different failure mode, and an increase in volume fraction of the steel fibre and loading area led to an increase in flexural resistance for the ULCC slabs without flexural reinforcement. Based on the experiment results, the analytical models were developed and also validated. The validations showed that the analytical models developed in this paper could predict the ultimate strength of the ULCC flat slabs with and without flexure reinforcement reasonably well.

A Study on the Flexural and Horizontal Shear Behavior of Overlaid Concrete Slabs (폴리머 중간접착증을 가진 철근콘크리트 슬래브의 접합부의 구조거동에 관한 연구)

  • 오병환;이형준;장제욱;이병철;최고일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.59-64
    • /
    • 1993
  • The flexural and horizontal shear behavior of overlaid concrete slabs is investigated in the present study. An experimental program was set up and several series of overlaid concrete slabs have been tested to study the effect of different surface preparation ; and dowels between old slab and overlay under service load. The present study indicates that the overlaid concrete slabs behave integrally with existing bottom slabs up to yield range for rough and doweled joints.

  • PDF

A Study on the Flexural Behavior of RC Slabs with Externally Bonded Aramid Fiber Sheets (AFRT로 보강된 철근콘크리트 슬래브의 휨거동에 관한 연구)

  • 박홍용;최익창;홍규창;박재홍
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.573-578
    • /
    • 1999
  • The reinforced concrete slabs with epoxy-bonded AFRT sheets were experimentally investigated. Experimental data on strength, stiffness, steel strain, deflection and mode of failure of strengthened slabs were obtained, and comparisons between the different flexural reinforcing schemes and reinforced concrete slabs without AFRT sheets were made. The result generally indicate that the flexural strength, ductile behavior of strengthened slabs increased.

  • PDF

The Effect of the flexural stiffness of Floor Slabs on The Seismic Response of Multi-story Building Structures (바닥판의 휨강성이 고층건물의 지진거동에 미치는 영향)

  • 김현수
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.170-177
    • /
    • 2000
  • Recently many high-rise apartment buildings are constructed using the box system which is composed only of concrete walls and slabs. Commercial softwares such as ETABS used for the analysis of high-rise apartment buildings are employing the rigid diaphragm assumption for simplicity in the analysis procedure. In general the flexural stiffness of floor slabs are ignored in the analysis, This assumption may be reasonable for the estimation of seismic response of framed structures. But in the case of the box system used in the apartment buildings floor slabs has major effects on the lateral stiffness of the structure. So if the flexural stiffness of slabs in the box system is ignored the lateral stiffness may be significantly underestimated, For these reasons it is recommended to use plate elements to represent the floor slabs. In the study A typical frame structure and a box system structure are chosen as the example structure. When a 20 story frame structure is subjected to the static lateral loads the displacements of the roof are 15.33cm and 17.52cm for the cases with and without the flexural stiffness of the floor slabs. And in case of box system the roof displacement was reduced from 16.18cm to 8.61cm The model without the flexural stiffness of floor slabs turned out to elongate the natural periods of vibration accordingly.

  • PDF

Numerical investigation on the structural behavior of two-way slabs reinforced with low ductility steel

  • Sakka, Zafer;Gilbert, R. Ian
    • Structural Engineering and Mechanics
    • /
    • v.65 no.3
    • /
    • pp.223-231
    • /
    • 2018
  • A numerical investigation of the impact of steel ductility on the strength and ductility of two-way corner and edge-supported concrete slabs containing low ductility welded wire fabric is presented. A finite element model was developed for the investigation and the results of a series of concurrent laboratory experiments were used to validate the numerical solution. A parametric investigation was conducted using the numerical model to investigate the various factors that influence the structural behavior at the strength limit state. Different values of steel uniform elongation and ultimate to yield strength ratios were considered. The results are presented and evaluated, with emphasis on the strength, ductility, and failure mode of the slabs. It was found that the ductility of the flexural reinforcement has a significant impact on the ultimate load behavior of two-way corner-supported slabs, particularly when the reinforcement was in the form of cold drawn welded wire fabric. However, the impact of the low ductility WWF has showed to be less prominent in structural slabs with higher levels of structural indeterminacy. The load-deflection curves of corner-supported slabs containing low ductility WWF are brittle, and the slabs have little ability to undergo plastic deformation at peak load.

An innovative system to increase the longitudinal shear capacity of composite slabs

  • Simoes, Rui;Pereira, Miguel
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.509-525
    • /
    • 2020
  • Steel-concrete composite slabs with profiled steel sheeting are widely used in the execution of floors in steel and composite buildings. The rapid construction process, the elimination of conventional replaceable shuttering and the reduction of temporary support are, in general, considered the main advantages of this structural system. In slabs with the spans currently used, the longitudinal shear resistance commonly provided by the embossments along the steel sheet tends to be the governing design mode. This paper presents an innovative reinforcing system that increases the longitudinal shear capacity of composite slabs. The system is constituted by a set of transversal reinforcing bars crossing longitudinal stiffeners executed along the upper flanges of the steel sheet profiles. This type of reinforcement takes advantage of the high bending resistance of the composite slabs and increases the slab's ductility. Two experimental programmes were carried out: a small-scale test programme - to study the resistance provided by the reinforcing system in detail - and a full-scale test programme to test simply supported and continuous composite slabs - to assess the efficacy of the proposed reinforcing system on the global behaviour of the slabs. Based on the results of the small-scale tests, an equation to predict the resistance provided by the proposed reinforcing system was established. The present study concludes that the resistance and the ductility of composite slabs using the reinforcing system proposed here are significantly increased.

Effect of fiber reinforcing on instantaneous deflection of self-compacting concrete one-way slabs under early-age loading

  • Vakhshouri, Behnam;Nejadi, Shami
    • Structural Engineering and Mechanics
    • /
    • v.67 no.2
    • /
    • pp.155-163
    • /
    • 2018
  • The Early-age construction loading and changing properties of concrete, especially in the multi-story structures can affect the slab deflection, significantly. Based on previously conducted experiment on eight simply-supported one-way slabs this paper investigates the effect of concrete type, fiber type and content, loading value, cracking moment, ultimate moment and applied moment on the instantaneous deflection of Self-Compacting Concrete (SCC) slabs. Two distinct loading levels equal to 30% and 40% of the ultimate capacity of the slab section were applied on the slabs at the age of 14 days. A wide range of the existing models of the effective moment of inertia which are mainly developed for conventional concrete elements, were investigated. Comparison of the experimental deflection values with predictions of the existing models shows considerable differences between the recorded and estimated instantaneous deflection of SCC slabs. Calculated elastic deflection of slabs at the ages of 14 and 28 days were also compared with the experimental deflection of slabs. Based on sensitivity analysis of the effective parameters, a new model is proposed and verified to predict the effective moment of inertia in SCC slabs with and without fiber reinforcing under two different loading levels at the age of 14 days.

3-D finite element modelling of prestressed hollow-core slabs strengthened with near surface mounted CFRP strips

  • Mahmoud, Karam;Anand, Puneet;El-Salakawy, Ehab
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.607-622
    • /
    • 2018
  • A non-linear finite element model (FEM) was constructed using a three-dimensional software (ATENA-3D) to investigate the effect of strengthening on the behavior of prestressed hollow-core (PHC) slabs with or without openings. The slabs were strengthened using near surface mounted (NSM)-carbon fiber reinforced polymer (CFRP) strips. The constructed model was validated against experimental results that were previously reported by the authors. The validated FEM was then used to conduct an extensive parametric study to examine the influence of prestressing reinforcement ratio, compressive strength of concrete and strengthening reinforcement ratio on the behavior of such slabs. The FEM results showed good agreement with the experimental results where it captured the cracking, yielding, and ultimate loads as well as the mid-span deflection with a reasonable accuracy. Also, an overall enhancement in the structural performance of these slabs was achieved with an increase in prestressing reinforcement ratio, compressive strength of concrete, external reinforcement ratio. The presence of openings with different dimensions along the flexural or shear spans reduced significantly the capacity of the PHC slabs. However, strengthening these slabs with 2 and 4 (64 and $128mm^2$ that represent reinforcement ratios of 0.046 and 0.092%) CFRP strips was successful in restoring the original strength of the slab and enhancing post-cracking stiffness and load carrying capacity.