• 제목/요약/키워드: SkyHook Control

검색결과 66건 처리시간 0.028초

인휠모터 구동차량의 승차감 및 자세제어를 위한 기초적 연구 (A Fundamental Study on the Control of Ride Comfort and Attitude for In-wheel Motor Vehicles)

  • 김영렬;박철;왕지남
    • 동력기계공학회지
    • /
    • 제16권1호
    • /
    • pp.91-97
    • /
    • 2012
  • It is being accelerated to develop environment-friendly vehicles to solve problems on the energy and environment of earth. The electric driving motor commonly installed in these vehicles has the excellent control capability such as fast response and accurate generation to torque control command. Especially, in-wheel motor has the additional merit such as independently driving each wheel in vehicle. Recently, being developed various control algorithm to enhance the safety and stability of vehicle motion using actively the merits of in-wheel motor. In addition to that, being issued the possibility of enhancing the ride comfort and attitude of vehicle motion such as pitching and rolling. In this paper, investigate the theoretical relationship between the braking/driving force and the motion of sprung mass of vehicle and propose the control method to enhance the ride comfort and attitude of vehicle motion. The proposed control method is proved through the simulation with vehicle model provided by TruckSim software which is commercial one and specializes in vehicle dynamics.

Inverse Model Control of An ER Damper System

  • Cho Jeong-Mok;Jung Taeg-Eun;Kim Dong-Hyeon;Joh Joong-Seon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권1호
    • /
    • pp.64-69
    • /
    • 2006
  • Due to the inherent nonlinear nature of Electro-rheological (ER) fluid dampers, one of the challenging aspects for utilizing these devices to achieve high system performance is the development of accurate models and control algorithms that can take advantage of their unique characteristics. In this paper, the nonlinear damping force model is made to identify the properties of the ER damper using higher order spectrum. The higher order spectral analysis is used to investigate the nonlinear frequency coupling phenomena with the damping force signal according to the sinusoidal excitation of the damper. Also, this paper presents an inverse model of the ER damper, i.e., the model can predict the required voltage so that the ER damper can produce the desired force for the requirement of vibration control of vehicle suspension systems. The inverse model is constructed by using a multi-layer perceptron neural network. A quarter-car suspension model is considered in this paper for analysis and simulation. Simulation results show that the proposed inverse model of ER damper can obtain control voltage of ER damper for required damping force.

A Fuzzy Skyhook Algorithm Using Piecewise Linear Inverse Model

  • Cho Jeong-Mok;Yoo Bong-Soo;Joh Joong-Seon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권3호
    • /
    • pp.190-196
    • /
    • 2006
  • In this paper, the nonlinear damping force model is made to identify the properties of the ER damper using higher order spectrum. The higher order spectral analysis is used to investigate the nonlinear frequency coupling phenomena with the damping force signal according to the sinusoidal excitation of the damper. Also, this paper presents an inverse model of the ER damper, i.e., the model can predict the required voltage so that the ER damper can produce the desired force for the requirement of vibration control of vehicle suspension systems. The inverse model has been constructed by using piecewise linear damping force model. In this paper, the fuzzy logic control based on heuristic knowledge is combined with the skyhook control. And it is simulated for a quarter car model. The acceleration of the sprung mass is included in the premise part of the fuzzy rules to reduce the vertical acceleration RMS value of the sprung mass. Then scaling factors and membership functions are tuned using genetic algorithm to obtain optimal performance.

승차감 향상을 위한 에어셀시트의 모델링 및 능동제어 (Modeling and Active Control of an Air-Cell Seat for Ride-Comfort Improvement)

  • 홍금식;황수환;홍경태;유완석
    • 대한기계학회논문집A
    • /
    • 제28권11호
    • /
    • pp.1672-1684
    • /
    • 2004
  • In this paper, an active vibration control with the use of an air-cell seat for passenger cars is investigated. The roles of the air-cell inserted between the polyurethane foam of the seat and seat cover are first to extend the seat's capability to adopt various shapes of human body and to improve the ride-comfort against road disturbances. The air-cell seat is modeled as a 1-d.o.f. spring-damper system. Because an exact modeling of the air-cell itself is alomost impossible, its dynamic characteristics are analyzed through experiments. A road-adaptive gain-scheduled sky-hook control for the air-cell seat system is proposed. The skyhook gains are scheduled in such a way that the acceleration level transmitted to human body on various road conditions is minimized. Simulations and experimental results are provided.

MR 유체를 이용한 운전석 댐퍼의 성능특성 (Performance Characteristics of Seat Damper Using MR Fluid)

  • 남무호
    • 한국생산제조학회지
    • /
    • 제9권5호
    • /
    • pp.127-134
    • /
    • 2000
  • This paper presents the development of a semi-active seat damper using MR fluids and the performance analysis of seat suspension system with a MR seat damper. An annular orifice type MR seat damper is proposed for a seat suspension of a commercial vehicle. After formulating the governing equation of motion, then an appropriate size of the seat damper is designed and manufactured. Following the evaluation of field-dependant damping force characteristics, the controllability of the damping force is experimentally demonstrated in time domain by adopting PID controller. A semi-active seat suspension with the proposed MR damper is constructed and its dynamic model is established. Subsequently, vibration control capability of the semi-active suspension system is investigated by employing the sky-hook controller.

  • PDF

실험적 MR댐퍼 모델을 사용한 1/4차량 진동 시뮬레이션 (1/4 Car Vibration Simulation Using An Empirical MR Damper Model)

  • 백운경;양보석;이종석;강태호;류성원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.638-643
    • /
    • 2005
  • This study is about a semi-active quarter car simulation method including a MR(magneto-rheological) damper. The MR damper was modeled as Spencer model that can capture nonlinear and hysteretic behavior. The parameters of the Spencer model were extracted from a random excitation test and optimum treatment of the test data. Then, a suspension control algorithm based on Sky-hook theory was applied for the quarter car simulation. Also, an experiment was dong using a quarter car simulator to confirm the simulation results with the Spencer MR damper model

  • PDF

실험적 MR댐퍼 모델을 사용한 1/4 차량 진동 시뮬레이션 (1/4 Car Vibration Simulation Using an Empirical MR Damper Model)

  • 양보석;이종석;강태호;류성원;백운경
    • 한국소음진동공학회논문집
    • /
    • 제15권9호
    • /
    • pp.1016-1022
    • /
    • 2005
  • This study is about a semi-active quarter car simulation method including a MR(magneto-rheological) damper. The MR damper was modeled as Spencer model that can capture nonlinear and hysteretic behavior. The parameters of the Spencer model were extracted from a random excitation test and optimum treatment of the test data. Then, a suspension control algorithm based on Sky-hook theory was applied for the quarter car simulation. Also, an experiment was done using a quarter car simulator to confirm the simulation results with the Spencer MR damper model.

비행 구조물에 탑재된 정밀 기기의 능동 진동 제어 (Active Vibration Control of a Precision Equipment on Flying Vehicle Structure)

  • 이재홍;유진형;박영필
    • 대한기계학회논문집A
    • /
    • 제23권11호
    • /
    • pp.1912-1921
    • /
    • 1999
  • The equipments mounted on guided-missile undertake heavy vibrational disturbance. Sometimes the equipments mounted on guided-missile go wrong so that the guided-missile flies over unintended place. For the vibration isolation of the equipments mounted on guided-missile, active vibration control was performed. In the case of active vibration technique, the stiffness matrix and the mass matrix are derived based on FEM (ANSYS5.0). Model reduction was carried out and, as a result, we got 7 DOF mass and stiffness matrix. For the sake of FEM model identification, modal experiment was carried out. With the help of Sensitivity Analysis, the natural frequencies of FEM were tuned to those of Experiment. In this work, the Sky Hook and the LQG control theory were adopted for v iteration control using stacked piezoactuator. Experiments were performed with changing excitation frequency from 10 Hz upto 200 Hz and we got frequency response function of guided-missile equipments. The magnitude of 3rd mode of guided-missile equipments is 8.6 % that of Uncontrolled in Skyhook controller and is 3.4 % that of uncontrolled in LQG controller.

타이어 공기압에 따른 ER 댐퍼 장착 승용차의 승차감분석 (Ride Comfort Analysis of Passenger Vehicle Featuring ER Damper with Different Tire Pressure)

  • 성금길;최승복
    • 한국소음진동공학회논문집
    • /
    • 제26권2호
    • /
    • pp.210-216
    • /
    • 2016
  • In this work, performance analysis to improve ride comfort of an ER (electrorheological) fluid damper for a mid-sized passenger vehicle in terms of tire pressure is presented. An ER damper by considering specification for a mid-sized commercial passenger vehicle is proposed and mechanically designed. After manufacturing and assembling the proposed ER damper with design parameters, their performance such as field-dependent damping forces are experimentally measured. A quarter-vehicle ER ECS (Electronic Control Suspension) system consisting of the ER damper, sprung mass, spring, sky-hook controller and tire is constructed to analysis the ride comfort performances. Vertical tire stiffness with different tire pressure is experimentally measured and investigated. In addition, ride comfort analysis such as vertical acceleration root mean square (RMS) of sprung mass is investigated under bump road using quarter-vehicle test equipment.

피스톤 바이패스 유로가 있는 MR 댐퍼 장착 1/4 차량 현가시스템의 성능평가 (Performance Evaluation of a Quarter Car Suspension System Installed with MR Damper Featuring Bypass Flow Holes in Piston)

  • 김완호;황용훈;박진하;신철수;최승복
    • 한국소음진동공학회논문집
    • /
    • 제27권1호
    • /
    • pp.65-71
    • /
    • 2017
  • This work presents a comparative work on the ride comfort of a quarter car suspension system between two different magneto-rheological (MR) dampers; one is conventional type without bypass hole and the other is featured by several bypass holes in the piston. As a first step, two different MR dampers are designed on the basis of the governing equation and manufactured with same geometric dimensions except the bypass holes. After investigating the field-dependent damping properties, two dampers are installed to the quarter car suspension system. The suspension model is then derived and a sky-hook controller is implemented to identify vibration control performance under random road. It is shown that the suspension system with MR damper featured by the bypass holes can provide much better ride quality than the case without the bypass holes. This is validated via experimental implementation.