• Title/Summary/Keyword: Sky Temperature

Search Result 141, Processing Time 0.026 seconds

Calculation of Night Sky Temperature According to Cloudiness in Daegu (운량에 따른 대구지방의 야간 천공온도 산정)

  • Na, Wook-Ho;Lee, Jong-Won;Diop, Souleymane;Lee, Hyun-Woo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.31 no.1
    • /
    • pp.38-44
    • /
    • 2013
  • To estimate the radiative heat loss from greenhouses, a new equation for calculating the sky temperature is presented. The sky temperature in the Daegu region was measured using a pyrgeometer and calculated using different equations according to the cloudiness. The calculated and measured results were then compared to identify the best equation for calculating the sky temperature. The difference value between the air and sky temperature was dissimilar and increased as the cloud amount decreased. On clear days the difference value was 10~20 times greater than that on cloudy and rainy days. When analyzing the correlationship between the calculated and measured sky temperatures on clear days, Bliss's and Clark & Allen's equations were found to be superior to the other equations. However, on cloudy days, the best correlationship between the calculated and measured sky temperatures was exhibited by Fuentes's equation. Therefore, a new equation is proposed for calculating the sky temperature on a cloudy day.

  • PDF

Prediction of the Summer Effective Sky Temperatrure during the Clear Day on Osan City (오산시의 맑은날 하절기 등가 하늘온도 예측)

  • Byun, Ki-Hong
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.5
    • /
    • pp.100-106
    • /
    • 2010
  • The purpose of this study is to predict the effective sky temperature on Osan City during the summer. The north latitude, east longitude of Osan City is $37^{\circ}06'$ and $127^{\circ}02'$. The altitude from the sea level is 48m. Empirical relations of the effective sky temperature suggested by Duffie and Beckman are compared on clear days. For the effective sky temperature prediction, data measured by the Korea Meteorological Administration is used as an input to the Bliss model. Both Hottel and Krondratyev model are used to calculate the water vapor emissivity. The results using Hottel's model match well with the empirical relation proposed by Bliss. The results show maximum, minimum, and average values depending on water vapor emissivity model. The maximum deviation is about 10K and is due to total emissivity model.

Nocturnal Radiant Cooling during the Winter by the Plate Viewing the Sky (겨울 야간 하늘에 노출된 평판에 의한 복사냉각 실험)

  • Byun, Ki-Hong
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.5
    • /
    • pp.49-55
    • /
    • 2008
  • The radiant cooling(RC) effects are studied during the winter night. The plate was viewing the nighttime sky. The data were collected at the rooftop of the Engineering building at the Dongguk University in Seoul, Korea. As observed during the summer night, the plate temperature was lower than ambient temperature under the RC favorable conditions. The parameters under study are the wind velocity, cloud index, and visibility for given system size and surface condition. The results follow the same tendency with these parameters as observed from the previous study for the summer night. As long as the wind velocity is less than around 2 m/s, the radiant cooling was observed with the system under study. In some cases, the radiant cooling temperature differences (RCTD) are higher than those for the summer night. The larger the RCTD as the wind velocity decreases and as the sky becomes clear.

Nocturnal Radiant Cooling by a Plate Viewing the Sky (야간 하늘에 노출된 평판의 복사냉각효과)

  • Byun, Ki-Hong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1300-1305
    • /
    • 2004
  • The purpose of this experiment is to study the radiant cooling effects by a plate directly viewing the nighttime sky. The measurements are performed at a rooftop of the Engineering building at the Dongguk University in Seoul during the month of August in 2004. The radiant cooling effects are compared using three different types of plate surfaces such as galvanized Iron, black painted, and aluminum film coated galvanized iron plate. Among these plates, the black painted surface show the lowest temperature that is lower than its ambient temperature. The maximum radiant cooling temperature difference, that is ambient temperature minus plate temperature, observed is about 5K..

  • PDF

Nocturnal Radiant Cooling Experiment by a Plate Viewing the Sky (야간 하늘에 노출된 평판의 복사냉각 실험)

  • Byun Ki-Hong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.6
    • /
    • pp.605-610
    • /
    • 2005
  • The purpose of this experiment is to study the radiant cooling effects by a plate directly viewing the nighttime sky. The measurements are performed on a rooftop of the Engineering building at the Dongguk University in Seoul during the month of August in 2004. The radiant cooling effects are compared using three different types of plate sufaces, namely, galvanized iron, black painted, and aluminum film coated galvanized iron plate. Among these plates, the black Painted surface showed the lowest temperature that is lower than the ambient temperature. The maximum radiant cooling temperature difference, which is ambient temperature minus plate temperature, observed is about 5 K.

Radiant Cooling by the Plate Viewing the Daytime Sky (주간 하늘에 노출된 평판에 의한 복사냉각 실험)

  • Byun, Ki-Hong
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.11-17
    • /
    • 2007
  • The purpose of this study is to check whether the plate temperature could be lower than the surrounding air by using the radiant cooling during the day time in summer at Seoul. Without an insolation shield as this experiment was performed, a few cases were found. The temperatures of the black painted plate are lower than those of the aluminium film coated plate if the following condition exist; no or small insolation over the plate, the wind velocity less than around 2 m/s, and clear sky However if there are insolation over the plate, the temperatures of the aluminium coated plate are lower than the black painted plate. Also, as the wind velocity increases, the plate temperature decreases faster. The temperature response of the small system is much faster than the large system.

Introduction to Simulation Activity for CMDPS Evaluation Using Radiative Transfer Model

  • Shin, In-Chul;Chung, Chu-Yong;Ahn, Myoung-Hwan;Ou, Mi-Lim
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.282-285
    • /
    • 2007
  • Satellite observed brightness temperature simulation using a radiative transfer model (here after, RTM) is useful for various fields, for example sensor design and channel selection by using theoretically calculated radiance data, development of satellite data processing algorithm and algorithm parameter determination before launch. This study is focused on elaborating the simulation procedure, and analyzing of difference between observed and modelled clear sky brightness temperatures. For the CMDPS (COMS Meteorological Data Processing System) development, the simulated clear sky brightness temperatures are used to determine whether the corresponding pixels are cloud-contaminated in cloud mask algorithm as a reference data. Also it provides important information for calibrating satellite observed radiances. Meanwhile, simulated brightness temperatures of COMS channels plan to be used for assessing the CMDPS performance test. For these applications, the RTM requires fast calculation and high accuracy. The simulated clear sky brightness temperatures are compared with those of MTSAT-1R observation to assess the model performance and the quality of the observation. The results show that there is good agreement in the ocean mostly, while in the land disagreement is partially found due to surface characteristics such as land surface temperature, surface vegetation, terrain effect, and so on.

  • PDF

Mesospheric Temperatures over Apache Point Observatory (32°N, 105°W) Derived from Sloan Digital Sky Survey Spectra

  • Kim, Gawon;Kim, Yong Ha;Lee, Young Sun
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.119-125
    • /
    • 2017
  • We retrieved rotational temperatures from emission lines of the OH airglow (8-3) band in the sky spectra of the Sloan digital sky survey (SDSS) for the period 2000-2014, as part of the astronomical observation project conducted at the Apache Point observatory ($32^{\circ}N$, $105^{\circ}W$). The SDSS temperatures show a typical seasonal variation of mesospheric temperature: low in summer and high in winter. We find that the temperatures respond to solar activity by as much as $1.2K{\pm}0.8K$ per 100 solar flux units, which is consistent with other studies in mid-latitude regions. After the seasonal variation and solar response were subtracted, the SDSS temperature is fairly constant over the 15 year period, unlike cooling trends suggested by some studies. This temperature analysis using SDSS spectra is a unique contribution to the global monitoring of climate change because the SDSS project was established for astronomical purposes and is independent from climate studies. The SDSS temperatures are also compared with mesospheric temperatures measured by the microwave limb sounder (MLS) instrument on board the Aura satellite and the differences are discussed.

An Experimental Study on the Thermal Performance of the Flat Roof in Proportion to Directional Changes (평지붕의 방위별 열성능에 관한 실험적 연구)

  • 박병규;황하진;이경희
    • Journal of the Korean housing association
    • /
    • v.12 no.2
    • /
    • pp.191-198
    • /
    • 2001
  • The aim of this research was to examine the thermal performance of the flat roof in proportion to various directional changes, the results of which were drawn from the miniature model experiment. In this process, various thermal environmental factors were measured and compared with one another to research their aspects of changes. The brief results of this research are as follows: 1) The indoor temperature and load per hour in proportion to directional changes shows the same degree of changes. As for the results of the clear-sky and cloudy-sky experiments, both of them generally appear advantageous in the order of S, $S-30^{\cire}C$-E, $S-30^{\cire}C$-W, $S-60^{\cire}C$-W, E, $S-60^{\cire}C$-E, despite slight differences in the indoor temperature and load per hour in proportion to directional changes. 2) As for the total load of degree day per direction of the clear-sky and cloudy-sky experiments, both of them shows their advantageous results in the order of S, $S-30^{\cire}C$-E, $S-30^{\cire}C$-W, $S-60^{\cire}C$-W, E, $S-60^{\cire}C$-E, despite minor differences in their loads. 3) As for the peak load of degree hour, while the clear-sky experiment shows its advantage in the order of $S-30^{\cire}C$-E, S, $-30^{\cire}C$-W, $S-60^{\cire}C$-W, E, $S-60^{\cire}C$-E, the cloudy-sky experiment does so in the order of S, $S-30^{\cire}C$-E, $S-30^{\cire}C$-W, E, $S-60^{\cire}C$-W, $S-60^{\cire}C$-E.

  • PDF

An Experimental Study on the Reduction Effects of Shading Devices on Sky Radiant Cooling in Winter (차양장치의 겨울철 천공복사 냉각 저감 효과에 관한 실험적 연구)

  • Kim, Jin-Hee;Kim, Young-Tag;Lee, Soo-Yeol;Choi, Won-Ki
    • Land and Housing Review
    • /
    • v.12 no.1
    • /
    • pp.129-137
    • /
    • 2021
  • External shading devices are well known solar control devices that can help reduce the cooling load of commercial buildings. For this study, experiments were conducted to examine the feasibility of shading devices in reducing both the cooling and heating loads. The influence of sky radiant cooling during winter was verified for the external shading device, internal roller blind, and window. Results can be summarized as follows. The temperature difference between the inner and outer surfaces of the window with the external shading device was 11.8℃ compared to 14.6℃ for one without the external shading device. This 2.8℃ difference was due to heat exchange by sky radiation when the surface temperature of the shading device was lower than the ambient outdoor air temperature. The roller blind resulted in a lower temperature of 0.8℃ compared to the average temperature of the window's air cavity. This was due to heat exchange by sky radiation of the roller blind surfaces. Without shading devices, the outside surface temperature of the window is about 3℃ higher. The study also found that when external shading devices were installed on both the southwest and southeast sides, the outside surface temperature of the windows were lower on the southwest side than the southeast side.