• Title/Summary/Keyword: Skull image

Search Result 143, Processing Time 0.027 seconds

Prototype Development of a Robotic System for Skull Drilling (로봇을 이용한 두개골 드릴링 시스템의 프로토타입 개발)

  • Chung, Yun-Chan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.3
    • /
    • pp.198-207
    • /
    • 2012
  • This paper presents an overview of automated robotic system for skull drilling, which is performed to access for some neurosurgical interventions, such as brain tumor resection. Currently surgeons use automatic-releasing cranial perforators. The drilling procedure must be performed very carefully to avoid penetration of brain nerve structures; however failure cases are reported. The presented prototype system utilizes both preoperative and intraoperative information. Preoperative CT image is used for robot path planning. A NeuroMate robot with a six-DOF force sensor at the end effector is used for intraoperative operation. Intraoperative cutting force from the force sensor is the key information to revise an initial registration and preoperative path plans. Some possibilities are verified by path simulation but cadaver experiments are required for validation of this prototype.

Segmentation of Scalp in Brain MR Images Based on Region Growing

  • Du, Ruoyu;Lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.343-344
    • /
    • 2009
  • The aim in this paper is to show how to extract scalp of a series of brain MR images by using region growing segmentation algorithm. Most researches are all forces on the segmentation of skull, gray matter, white matter and CSF. Prior to the segmentation of these inner objects in brain, we segmented the scalp and the brain from the MR images. The scalp mask makes us to quickly exclude background pixels with intensities similar those of the skull, while the brain mask obtained from our brain surface. We make use of connected threshold method (CTM) and confidence connected method (CCM). Both of them are two implementations of region growing in Insight Toolkit (ITK). By using these two methods, the results are displayed contrast in the form of 2D and 3D scalp images.

Evaluation of the Accuracy of Distance Measurements on 3D Volume-rendered Image of Human Skull Using Multi-detector CT: Effects of Acquisition Section Thickness and Reconstruction Section Thickness

  • Haijo Jung;Kim, Hee-Joung;Lee, Sang-Ho;Kim, Dong-Wook;Soonil Hong;Kim, Dong-Hyeon;Son, Hye-Kyung;Wonsuk Kang;Kim, Kee-Deog
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.457-460
    • /
    • 2002
  • The image quality of three-dimensional (3D) images has been widely investigated by the qualitative analysis method. A need remains for an objective and quantitative method to assess the image quality of 3D volume-rendered images. The purpose of this study was to evaluate the quantitative accuracy of distance measurements on 3D volume-rendered images of a dry human skull by using multi-detector computed tomography (MDCT). A radiologist measured five times the twenty-one direct measurement line items composed among twelve reference points on the skull surface with a digital vernier caliper. The water filled skull specimen was scanned with a MDCT according to the section thicknesses of 1.25, 2.50, 3.75, and 5.00 mm for helical (high quality; pitch 3:1) scan mode. MDCT data were reconstructed with its acquisition section thickness and with 1.25 mm section thickness for all scans. An observer also measured seven times the corresponding items on 3D volume-rendered images with measuring tools provided by volumetric analysis software. The quantitative accuracy of distance measurements on the 3D volume-rendered images was statistically evaluated (p-value < 0.05) by comparatively analyzing these measurements with the direct distance measurements. The accuracy of distance measurements on the 3D volume-rendered MDCT images acquired with 1.25, 2.50, 3,75 and 5.00 mm section thickness and reconstructed with its section thickness were 48%, 33%, 23%, and 14%, respectively. Meanwhile, there were insignificant statistical differences in accuracy of distance measurements among 3D volume-rendered images reconstructed with 1.25 mm section thickness for the each acquisition section thickness. MDCT images acquired with thick section thickness and reconstructed with thin section thickness in helical scan mode should be effectively used in medical planning of 3D volume-rendered images. The quantitative analysis of distance measurement may be a useful tool for evaluating the quantitative accuracy and the defining optimal parameters of 3D volume-rendered CT images.

  • PDF

Evaluation of Usefulness of Assertive Devices to Improve the Accuracy in Skull lateral X-ray Projection (두개골 측방향 X-선 촬영에서 정확도 향상을 위한 촬영 보조 기구의 유용성 평가)

  • Bo-Seok Chang
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.2
    • /
    • pp.153-159
    • /
    • 2024
  • In X-ray projection, Unskilled radiologists become skilled through fail exam. This causes the patient to be exposed to unnecessary radiation. In this study, pre-position unskilled radiologic technologist presented ways to improve clinical proficiency. presented a skull lateral x-ray projection practice method using visual, spatial, and assistive devices. In addition, the accuracy and usefulness of the use of assistive devices were evaluated. When X-ray images were taken based on learning, the rotational spacing, which indicates image distortion, was 7.85 ± 1.45 mm and the tiliting spacing was 4.84 ± 0.5 mm. When practicing using visual aids, the rotational spacing is 4.4 ± 0.76 mm and the inclination spacing is 3.01 ± 0.87 mm. using a spatial compensation device, the rotational spacing is 5.2 ± 0.69 mm and the tiliting spacing is 3.33 ± 0.61 mm. Skull lateral X-ray Image distortion caused by empirical photography practice decreased by 5.4%, but image distortion caused by tilting increased by 1.2%. When practicing using a visual assistive devices, the degree of rotational spacing by 40.1% and the tiliting spacing decreased by 30.7% compared to the empirical x-ray exposure practice. When using spatial assistive devices, the rotation interval was reduced by 41.7% and the tilting interval by 23.7% compared to conventional empirical x-ray exposure practice. Therefore, if an unskilled radiologist practices using visual and spatial aids,the accuracy will be improved in skull lateral x-ray projection.

Quantitative Measurements of 3-D Imaging with Computed Tomography using Human Skull Phantom

  • Kim, Dong-Wook;Kim, Hee-Joung;Haijo Jung;Soonil Hong;Yoo, Young-Il;Kim, Dong-Hyeon;Kim, Kee-Deog
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.506-508
    • /
    • 2002
  • As an advancement of medical imaging modalities and analyzing software with multi-function, active researches to acquire high contrast and high resolution image being done. In recently, development of medical imaging modalities like as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) is aiming to display anatomical structure more accuracy and faster. Thus, one of the important areas in CT today is the use of CT scanner for the quantitative evaluation of 3-D reconstruction images from 2-D tomographic images. In CT system, the effective slice thickness and the quality of 3-D reconstructed image will be influenced by imaging acquisition parameters (e.g. pitch and scan mode). In diagnosis and surgical planning, the accurate distance measurements of 3-D anatomical structures play an important role and the accuracy of distance measurements will depend on the acquisition parameters such as slice thickness, pitch, and scan mode. The skull phantom was scanned with SDCT for various acquisition parameters and acquisition slice thicknesses were 3 and 5 mm, and reconstruction intervals were 1, 2, and 3 mm to each pitch. 3-D visualizations and distance measurements were performed with PC based 3-D rendering and analyzing software. Results showed that the image quality and the measurement accuracy of 3-D SDCT images are independent to the reconstruction intervals and pitches.

  • PDF

Optimization of exposure parameters and relationship between subjective and technical image quality in cone-beam computed tomography

  • Park, Ha-Na;Min, Chang-Ki;Kim, Kyoung-A;Koh, Kwang-Joon
    • Imaging Science in Dentistry
    • /
    • v.49 no.2
    • /
    • pp.139-151
    • /
    • 2019
  • Purpose: This study was performed to investigate the effect of exposure parameters on image quality obtained using a cone-beam computed tomography (CBCT) scanner and the relationship between physical factors and clinical image quality depending on the diagnostic task. Materials and Methods: CBCT images of a SedentexCT IQ phantom and a real skull phantom were obtained under different combinations of tube voltage and tube current (Alphard 3030 CBCT scanner, 78-90 kVp and 2-8 mA). The images obtained using a SedentexCT IQ phantom were analyzed technically, and the physical factors of image noise, contrast resolution, spatial resolution, and metal artifacts were measured. The images obtained using a real skull phantom were evaluated for each diagnostic task by 6 oral and maxillofacial radiologists, and each setting was classified as acceptable or unacceptable based on those evaluations. A statistical analysis of the relationships of exposure parameters and physical factors with observer scores was conducted. Results: For periapical diagnosis and implant planning, the tube current of the acceptable images was significantly higher than that of the unacceptable images. Image noise, the contrast-to-noise ratio (CNR), the line pair chart on the Z axis, and modulation transfer function (MTF) values showed statistically significant differences between the acceptable and unacceptable image groups. The cut-off values obtained using receiver operating characteristic curves for CNR and MTF 10 were useful for determining acceptability. Conclusion: Tube current had a major influence on clinical image quality. CNR and MTF 10 were useful physical factors that showed significantly associations with clinical image quality.

Reference line-pair values of panoramic radiographs using an arch-form phantom stand to assess clinical image quality

  • Choi, Da-Hye;Choi, Bo-Ram;Choi, Jin-Woo;Huh, Kyung-Hoe;Yi, Won-Jin;Heo, Min-Suk;Choi, Soon-Chul;Lee, Sam-Sun
    • Imaging Science in Dentistry
    • /
    • v.43 no.1
    • /
    • pp.7-15
    • /
    • 2013
  • Purpose: This study was performed to suggest reference line-pair values of panoramic images with clinically desirable qualities using an arch-form phantom stand. Materials and Methods: The line-pair test phantom was chosen. A real skull model was selected for setting the arch-form model of the phantom stand. The phantom stand had slits in four regions (incisor, premolar, molar, TMJ). Four raw images of the test phantom in each region and one raw image of the real skull were converted into 50 test phantom images and 50 skull phantom images with various line-pair values. 50 post-processed real skull phantom images were divided into 4 groups and were randomly submitted to 14 evaluators. Image quality was graded on a 4 point scale (1. good, 2. normal, 3. poor but interpretable, and 4. not interpretable). The reference line pair was determined as the first line-pair value scored less than 2 points. Result: The mean scores tended to decrease as the line-pair values increased. The reference line-pair values were 3.19 LP/mm in the incisor, 2.32 LP/mm in the premolar and TMJ, and 1.88 LP/mm in the molar region. Conclusion: Image quality evaluation methods and criteria should be able to assess various regions considering the characteristics of panoramic systems. This study suggested overall and regional reference line-pair values and established a set of standard values for them.

Automatically Diagnosing Skull Fractures Using an Object Detection Method and Deep Learning Algorithm in Plain Radiography Images

  • Tae Seok, Jeong;Gi Taek, Yee; Kwang Gi, Kim;Young Jae, Kim;Sang Gu, Lee;Woo Kyung, Kim
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.1
    • /
    • pp.53-62
    • /
    • 2023
  • Objective : Deep learning is a machine learning approach based on artificial neural network training, and object detection algorithm using deep learning is used as the most powerful tool in image analysis. We analyzed and evaluated the diagnostic performance of a deep learning algorithm to identify skull fractures in plain radiographic images and investigated its clinical applicability. Methods : A total of 2026 plain radiographic images of the skull (fracture, 991; normal, 1035) were obtained from 741 patients. The RetinaNet architecture was used as a deep learning model. Precision, recall, and average precision were measured to evaluate the deep learning algorithm's diagnostic performance. Results : In ResNet-152, the average precision for intersection over union (IOU) 0.1, 0.3, and 0.5, were 0.7240, 0.6698, and 0.3687, respectively. When the intersection over union (IOU) and confidence threshold were 0.1, the precision was 0.7292, and the recall was 0.7650. When the IOU threshold was 0.1, and the confidence threshold was 0.6, the true and false rates were 82.9% and 17.1%, respectively. There were significant differences in the true/false and false-positive/false-negative ratios between the anterior-posterior, towne, and both lateral views (p=0.032 and p=0.003). Objects detected in false positives had vascular grooves and suture lines. In false negatives, the detection performance of the diastatic fractures, fractures crossing the suture line, and fractures around the vascular grooves and orbit was poor. Conclusion : The object detection algorithm applied with deep learning is expected to be a valuable tool in diagnosing skull fractures.

A STUDY ON SECONDARY IMAGES IN PANORAMIC RADIOGRAPH (파노라마방사선사진에 있어서 이차상에 관한 연구)

  • Cho Dai Hee;Kim Han Pyong
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.14 no.1
    • /
    • pp.81-87
    • /
    • 1984
  • This study was performed to observe the secondary images and to analyse the relationships between the primary and secondary images in panoramic radiograph. Using the Moritta's Panex-EC panoramic x-ray machine and the human dry skull, the author analysed 17 radiographs which were selected from 65 radiographs of the dry skull that attached the radiopaque materials, and the attached regions of the radiopaque materials were the normal anatomical structures which were important and selected as a regions for the evaluation of the secondary images effectively. The results were as follows; 1. The cervical vertebrae showed three images. The midline image was the most distorted and less clear, and bilateral images were slightly superimposed over the posterior border of the mandibular ramus. 2. In mandible, the secondary image of the posterior border of the ramus was superimposed on the opposite ramus region, and this image was elongated from the anterior border of the ramus to the lateral side of the posterior border of the ramus. The secondary image of the condyle was observed on the upper area of the coronoid process, the sigmoid notch and the condyle in opposite side. 3. In maxilla, the posterior region of the hard palate showed the secondary image on the lower part of the nasal cavity and the medial wall of the maxillary sinus. 4. The primary images of the occipital condyle and the mastoid process appeared on the same region, and only the secondary image of the occipital condyle was observed symmetrically on the opposite side with similar shape to the primary one. 5. In the cranial base, the anatomical structures of the midsagittal portions like a inferior border of the frontal sinus, sella turcica, inferior borderr of the sphenoid sinus and inferior border of the posterior part of the occipital bone showed the simillar shape between the primary and secondary images symmetrically. 6. The petrous portion of the temporal bone showed the secondary image on the lateral side of the sella-turcica, and the secondary images of the posterior border of lesser wing, superior border of greater wing of the sphenoid bone and posterior border were observed on the anterior-superior and inferior region of the sella-turcica.

  • PDF

EVALUATION OF THE MAXILLARY SINUS AND ADJACENT STRUCTURES ON THE ORTHOPANTOMOGRAPH ACCORDING TO THE HEAD POSITIONS (머리의 위치변화에 따른 파노라마방사선 사진상에서의 상악동 및 인접조직의 평가)

  • Lee Jin-Kyung;Kim Jae-Duk
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.22 no.2
    • /
    • pp.315-327
    • /
    • 1992
  • The purpose of this study was to evaluate the utilization of the orthopantomograph as a diagnostic aid to observe maxillary sinus and adjacent structures. For achieving this goal. the lead plates were attached to the five walls of the maxillary sinus of a human dry skull. The dry skull was placed in fourteen different positions; standard. 20mm forward. 20mm backward. 10 degree upward. 10 degree downward. 20mm lateral. forward & upward, forward & downward. forward & lateral. backward & upward. backward & downward, backward & lateral. upward & lateral. downward & lateral position. The obtained results were as follows: 1. The image of the medial wall was observed very differently according to the head positions. 2. The image of the anterior wall was observed at medial third to half of the maxillary sinus in each head position. 3. the image of the posterior wall was always observed at lateral third of the maxillary sinus in all head positions and more obviously in the downward-lateral position. 4. The image of the superior wall was observed at the inferior third to half of the orbit in each head position. 5. The image of the inferior wall was always observed at the inferior third of maxillary sinus in all head positions and observed more obviously in the standard and downward-lateral positions. 6. The images of the zygomatic process. zygomatic arch and zygomaticotemporal suture were observed very well in the downward-lateral position.

  • PDF