• 제목/요약/키워드: Skin lesion segmentation

검색결과 7건 처리시간 0.019초

Texture Based Automated Segmentation of Skin Lesions using Echo State Neural Networks

  • Khan, Z. Faizal;Ganapathi, Nalinipriya
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.436-442
    • /
    • 2017
  • A novel method of Skin lesion segmentation based on the combination of Texture and Neural Network is proposed in this paper. This paper combines the textures of different pixels in the skin images in order to increase the performance of lesion segmentation. For segmenting skin lesions, a two-step process is done. First, automatic border detection is performed to separate the lesion from the background skin. This begins by identifying the features that represent the lesion border clearly by the process of Texture analysis. In the second step, the obtained features are given as input towards the Recurrent Echo state neural networks in order to obtain the segmented skin lesion region. The proposed algorithm is trained and tested for 862 skin lesion images in order to evaluate the accuracy of segmentation. Overall accuracy of the proposed method is compared with existing algorithms. An average accuracy of 98.8% for segmenting skin lesion images has been obtained.

Skin Lesion Segmentation with Codec Structure Based Upper and Lower Layer Feature Fusion Mechanism

  • Yang, Cheng;Lu, GuanMing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권1호
    • /
    • pp.60-79
    • /
    • 2022
  • The U-Net architecture-based segmentation models attained remarkable performance in numerous medical image segmentation missions like skin lesion segmentation. Nevertheless, the resolution gradually decreases and the loss of spatial information increases with deeper network. The fusion of adjacent layers is not enough to make up for the lost spatial information, thus resulting in errors of segmentation boundary so as to decline the accuracy of segmentation. To tackle the issue, we propose a new deep learning-based segmentation model. In the decoding stage, the feature channels of each decoding unit are concatenated with all the feature channels of the upper coding unit. Which is done in order to ensure the segmentation effect by integrating spatial and semantic information, and promotes the robustness and generalization of our model by combining the atrous spatial pyramid pooling (ASPP) module and channel attention module (CAM). Extensive experiments on ISIC2016 and ISIC2017 common datasets proved that our model implements well and outperforms compared segmentation models for skin lesion segmentation.

Skin Lesion Image Segmentation Based on Adversarial Networks

  • Wang, Ning;Peng, Yanjun;Wang, Yuanhong;Wang, Meiling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권6호
    • /
    • pp.2826-2840
    • /
    • 2018
  • Traditional methods based active contours or region merging are powerless in processing images with blurring border or hair occlusion. In this paper, a structure based convolutional neural networks is proposed to solve segmentation of skin lesion image. The structure mainly consists of two networks which are segmentation net and discrimination net. The segmentation net is designed based U-net that used to generate the mask of lesion, while the discrimination net is designed with only convolutional layers that used to determine whether input image is from ground truth labels or generated images. Images were obtained from "Skin Lesion Analysis Toward Melanoma Detection" challenge which was hosted by ISBI 2016 conference. We achieved segmentation average accuracy of 0.97, dice coefficient of 0.94 and Jaccard index of 0.89 which outperform the other existed state-of-the-art segmentation networks, including winner of ISBI 2016 challenge for skin melanoma segmentation.

트랜스포머 블록과 윤곽선 디코더를 활용한 딥러닝 기반의 피부 병변 분할 방법 (Deep Learning based Skin Lesion Segmentation Using Transformer Block and Edge Decoder)

  • 김지훈;박경리;김해문;문영식
    • 한국정보통신학회논문지
    • /
    • 제26권4호
    • /
    • pp.533-540
    • /
    • 2022
  • 전문의는 피부암을 조기에 발견하기 위해 피부경을 사용하여 진단하지만 다양한 형태로 인해 피부 병변을 판단하는 데 어려움이 있다. 최근 높은 성능을 보인 딥러닝을 이용한 피부 병변 분할 방법이 제안되었지만 피부와 피부 병변 경계가 명확하지 않아서 피부 병변을 분할하는 데 문제점이 있었다. 이러한 문제를 개선하기 위해 제안하는 방법은 효과적으로 피부 병변을 분할하기 위해 트랜스포머 블록을 구성하였으며, 네트워크의 각 계층마다 윤곽선 디코더를 구성하여 피부 병변을 자세히 분할하였다. 실험 결과, 제안하는 방법은 기존의 방법보다 Dice coefficient 기준 0.041 ~ 0.071, Jaccard Index 기준 0.067 ~ 0.112의 성능 향상을 보인다.

피부 병변 분할을 위한 어텐션 기반 딥러닝 프레임워크 (Attention-based deep learning framework for skin lesion segmentation)

  • 아프난 가푸어;이범식
    • 스마트미디어저널
    • /
    • 제13권3호
    • /
    • pp.53-61
    • /
    • 2024
  • 본 논문은 기존 방법보다 우수한 성능을 달성하는 피부 병변 분할을 위한 새로운 M자 모양 인코더-디코더 아키텍처를 제안한다. 제안된 아키텍처는 왼쪽과 오른쪽 다리를 활용하여 다중 스케일 특징 추출을 가능하게 하고, 스킵 연결 내에서 어텐션 메커니즘을 통합하여 피부 병변 분할 성능을 더욱 향상시킨다. 입력 영상은 네 가지 다른 패치로 분할되어 입력되며 인코더-디코더 프레임워크 내에서 피부 병변 분할 성능의 향상된 처리를 가능하게 한다. 제안하는 방법에서 어텐션 메커니즘을 통해 입력 영상의 특징에 더 많은 초점을 맞추어 더욱 정교한 영상 분할 결과를 도출하는 것이다. 실험 결과는 제안된 방법의 효과를 강조하며, 기존 방법과 비교하여 우수한 정확도, 정밀도 및 Jaccard 지수를 보여준다.

다중 스케일 어텐션과 심층 앙상블 기반 동물 피부 병변 분류 기법 (Multi-scale Attention and Deep Ensemble-Based Animal Skin Lesions Classification)

  • 곽민호;김경태;최재영
    • 한국멀티미디어학회논문지
    • /
    • 제25권8호
    • /
    • pp.1212-1223
    • /
    • 2022
  • Skin lesions are common diseases that range from skin rashes to skin cancer, which can lead to death. Note that early diagnosis of skin diseases can be important because early diagnosis of skin diseases considerably can reduce the course of treatment and the harmful effect of the disease. Recently, the development of computer-aided diagnosis (CAD) systems based on artificial intelligence has been actively made for the early diagnosis of skin diseases. In a typical CAD system, the accurate classification of skin lesion types is of great importance for improving the diagnosis performance. Motivated by this, we propose a novel deep ensemble classification with multi-scale attention networks. The proposed deep ensemble networks are jointly trained using a single loss function in an end-to-end manner. In addition, the proposed deep ensemble network is equipped with a multi-scale attention mechanism and segmentation information of the original skin input image, which improves the classification performance. To demonstrate our method, the publicly available human skin disease dataset (HAM 10000) and the private animal skin lesion dataset were used for the evaluation. Experiment results showed that the proposed methods can achieve 97.8% and 81% accuracy on each HAM10000 and animal skin lesion dataset. This research work would be useful for developing a more reliable CAD system which helps doctors early diagnose skin diseases.

딥 러닝 기반의 악성흑색종 분류를 위한 컴퓨터 보조진단 알고리즘 (A Computer Aided Diagnosis Algorithm for Classification of Malignant Melanoma based on Deep Learning)

  • 임상헌;이명숙
    • 디지털산업정보학회논문지
    • /
    • 제14권4호
    • /
    • pp.69-77
    • /
    • 2018
  • The malignant melanoma accounts for about 1 to 3% of the total malignant tumor in the West, especially in the US, it is a disease that causes more than 9,000 deaths each year. Generally, skin lesions are difficult to detect the features through photography. In this paper, we propose a computer-aided diagnosis algorithm based on deep learning for classification of malignant melanoma and benign skin tumor in RGB channel skin images. The proposed deep learning model configures the tumor lesion segmentation model and a classification model of malignant melanoma. First, U-Net was used to segment a skin lesion area in the dermoscopic image. We could implement algorithms to classify malignant melanoma and benign tumor using skin lesion image and results of expert's labeling in ResNet. The U-Net model obtained a dice similarity coefficient of 83.45% compared with results of expert's labeling. The classification accuracy of malignant melanoma obtained the 83.06%. As the result, it is expected that the proposed artificial intelligence algorithm will utilize as a computer-aided diagnosis algorithm and help to detect malignant melanoma at an early stage.