• 제목/요약/키워드: Skin damage

검색결과 678건 처리시간 0.03초

황금(黃芩)의 에탄올추출물에 의한 화장품 방부효과 (Preservation of Cosmetics by Ethanol Extract of Scutellaria baicalensis $G_{EORGE}$)

  • 황신혜;박창호
    • KSBB Journal
    • /
    • 제24권4호
    • /
    • pp.347-352
    • /
    • 2009
  • Skin toner와 skin lotion의 두 가지 화장품 formulation에 기존의 파라벤류 방부제 대신 황금 (黃芩) 추출물 (1.0 wt%)을 첨가하고 Staphylococcus aureus (ATCC 25923), Pseudomonas aeruginosa (ATCC 9027) 및 Candida albicans (ATCC 10231) 균주를 접종하였을 때 이 균주들은 7일 이내에 99.9% 이상의 사멸율을 보여 황금추출물이 CTFA기준을 만족하는 항균력이 있음을 확인하였다. 다만 skin lotion에 접종된 Candida albicans의 경우 사멸율은 CTFA기준에 약간 미달하는 99.8%이었다. 또한 황금추출물의 농도가 1.0 wt% 이하일 때 균주의 생존율은 그람 양성균인 P. aeruginosa가 가장 높고 그람 음성균인 P. aeruginosa가 가장 낮았다. 전계방출형 주사전자현미경(FE-SEM)을 이용한 세포형태변화 관찰 결과 황금추출물이 P. aeruginosa에 대하여 더 큰 방부력을 갖는 것은 이 균주의 세포막이 황금추출물에 의해 더 심하게 손상되기 때문으로 사료된다. 고농도의 황금추출물이 더 높은 항산화 효과를 나타냈으며 1,000 ppm에서 80%정도의 SOD-유사활성을 나타내었다.

Mannosylerythritol lipids ameliorate ultraviolet A-induced aquaporin-3 downregulation by suppressing c-Jun N-terminal kinase phosphorylation in cultured human keratinocytes

  • Bae, Il-Hong;Lee, Sung Hoon;Oh, Soojung;Choi, Hyeongwon;Marinho, Paulo A.;Yoo, Jae Won;Ko, Jae Young;Lee, Eun-Soo;Lee, Tae Ryong;Lee, Chang Seok;Kim, Dae-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권2호
    • /
    • pp.113-120
    • /
    • 2019
  • Mannosylerythritol lipids (MELs) are glycolipids and have several pharmacological efficacies. MELs also show skin-moisturizing efficacy through a yet-unknown underlying mechanism. Aquaporin-3 (AQP3) is a membrane protein that contributes to the water homeostasis of the epidermis, and decreased AQP3 expression following ultraviolet (UV)-irradiation of the skin is associated with reduced skin moisture. No previous study has examined whether the skin-moisturizing effect of MELs might act through the modulation of AQP3 expression. Here, we report for the first time that MELs ameliorate the UVA-induced downregulation of AQP3 in cultured human epidermal keratinocytes (HaCaT keratinocytes). Our results revealed that UVA irradiation decreases AQP3 expression at the protein and messenger RNA (mRNA) levels, but that MEL treatment significantly ameliorated these effects. Our mitogen-activated protein kinase inhibitor analysis revealed that phosphorylation of c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinase or p38, mediates UVA-induced AQP3 downregulation, and that MEL treatment significantly suppressed the UVA-induced phosphorylation of JNK. To explore a possible mechanism, we tested whether MELs could regulate the expression of peroxidase proliferator-activated receptor gamma ($PPAR-{\gamma}$), which acts as a potent transcription factor for AQP3 expression. Interestingly, UVA irradiation significantly inhibited the mRNA expression of $PPAR-{\gamma}$ in HaCaT keratinocytes, whereas a JNK inhibitor and MELs significantly rescued this effect. Taken together, these findings suggest that MELs ameliorate UVA-induced AQP3 downregulation in HaCaT keratinocytes by suppressing JNK activation to block the decrease of $PPAR-{\gamma}$. Collectively, our findings suggest that MELs can be used as a potential ingredient that modulates AQP3 expression to improve skin moisturization following UVA irradiation-induced damage.

Application of 630-nm and 850-nm Light-emitting Diodes and Microcurrent to Accelerate Collagen and Elastin Deposition in Porcine Skin

  • Kwon, Tae-Rin;Moon, Dong Wook;Kim, Jungwook;Kim, Hyoung Jun;Lee, Seong Jae;Han, Yunhee;Dan, Hee Won;Chi, Sang Hoon;Seong, Hwan Mo;Kim, Hee Jung;Lim, Guei-Sam;Lee, Jungkwan
    • Medical Lasers
    • /
    • 제10권2호
    • /
    • pp.96-105
    • /
    • 2021
  • Background and Objectives Skin aging is reportedly associated with regulation in collagen and elastin synthesis. This study investigated the potential of combining light-emitting diode (LED) treatments using a 630-nm and 850-nm LED with simultaneous microcurrent application. Materials and Methods The dorsal skin of female pigs was treated with a home-use device. We examined the treatment effects using photography, thermocamera, microscopic pathology, and histological examination to determine the mechanism of action, efficacy, and safety of the procedure. A histological observation was performed using hematoxylin and eosin, Masson's trichrome, Victoria blue, and immunohistochemical staining. We also used the Sircol soluble collagen and elastin assay kit to measure the amounts of collagen and elastin in the porcine back skin tissue after 2 and 6 weeks. Results Evaluation by visual inspection and devices showed no skin damage or heat-induced injury at the treatment site. Histological staining revealed that accurate treatment of the targeted dermis layer effectively enhanced collagen and elastin deposition. Collagen type I, a protein defined by immunohistochemical staining, was overexpressed in the early stages of weeks 2 and 6. Combined therapy findings showed the superior capability of the 630-nm and 850-nm LED procedures to induce collagen; in contrast, elastin induction was more pronounced after microcurrent treatments. Conclusion The home-use LED device, comprising a combination of 630-nm and 850-nm LEDs and microcurrent, is safe and can be used as an adjunctive treatment for self-administered facial rejuvenation.

Antioxidant and Antimelanogenic Activities of Kimchi-Derived Limosilactobacillus fermentum JNU532 in B16F10 Melanoma Cells

  • Meng, Ziyao;Oh, Sejong
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권7호
    • /
    • pp.990-998
    • /
    • 2021
  • Melanin is a natural skin pigment produced by specialized cells called melanocytes via a multistage biochemical pathway known as melanogenesis, involving the oxidation and polymerization of tyrosine. Melanogenesis is initiated upon exposure to ultraviolet (UV) radiation, causing the skin to darken, which protects skin cells from UVB radiation damage. However, the abnormal accumulation of melanin may lead to the development of certain skin diseases, including skin cancer. In this study, the antioxidant and antimelanogenic activities of the cell-free supernatant (CFS) of twenty strains were evaluated. Based on the results of 60% 2,2-diphenyl-1-picrylhydrazyl scavenging activity, 21% 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) scavenging capacity, and a 50% ascorbic acid equivalent ferric reducing antioxidant power value, Limosilactobacillus fermentum JNU532 was selected as the strain with the highest antioxidant potential. No cytotoxicity was observed in cells treated with the CFS of L. fermentum JNU532. Tyrosinase activity was reduced by 16.7% in CFS-treated B16F10 cells (but not in the cell-free system), with >23.2% reduction in melanin content upon treatment with the L. fermentum JNU532-derived CFS. The inhibitory effect of the L. fermentum JNU532-derived CFS on B16F10 cell melanogenesis pathways was investigated using quantitative reverse transcription polymerase chain reaction and western blotting. The inhibitory effects of the L. fermentum JNU532-derived CFS were mediated by inhibiting the transcription of TYR, TRP-1, TRP-2, and MITF and the protein expression of TYR, TRP-1, TRP-2, and MITF. Therefore, L. fermentum JNU532 may be considered a potentially useful, natural depigmentation agent.

Inhibitory Effects of Collagen Coated Coffee Bean Intake on Skin Aging

  • Lee, In-Ah;Ha, Mi-Ae;Shin, Yong-Wook
    • 인간식물환경학회지
    • /
    • 제22권1호
    • /
    • pp.39-52
    • /
    • 2019
  • To evaluate the protective effect of collagen peptide-coated coffee extract on skin aging, cell viability was measured with a MTT assay using cultured CCD-986sk fibroblasts, and its effect on wrinkles in the skin of hairless mice induced by UVB-irradiation was examined. In addition, its effect on procollagen synthesis and anti-oxidative, and its inhibitory activity against collagenase, elastase, tyrosinase and MMP-1 were analysed. After the 30-minute topical treatment, the animals were exposed to UVB irradiation (60-100 mJ/cm2) for 4 weeks and its intensity increased during the period. Under the experimental conditions set in this study, the skin thickness of hairless mice significantly decreased (11.8-21.3%) compared to the control group. Based on these results, the prolonged oral intake of a collagen peptide mixture with coffee is expected to significantly increase the synthesis of procollagen in dermal fibroblasts, thereby contributing to the alleviation of wrinkling and lowered elasticity due to structural damage to the dermal layer caused by UV. The oral intake of collagen-coated coffee contributes to increasing collagen biosynthesis in a dose-dependent manner and alleviates the symptoms of thickened keratin caused by UV irradiation. However, it did not inhibit the enzymes involved in skin aging, whitening, wrinkle improvement, and antioxidation. Based on the these results, it can be concluded that the intake of collagen peptide-coated coffee extract can be utilized as an alternative material for the prevention or treatment of diseases associated with photoaging.

Ginseng root-derived exosome-like nanoparticles protect skin from UV irradiation and oxidative stress by suppressing activator protein-1 signaling and limiting the generation of reactive oxygen species

  • Wooram Choi;Jeong Hun Cho;Sang Hee Park;Dong Seon Kim;Hwa Pyoung Lee;Donghyun Kim;Hyun Soo Kim;Ji Hye Kim;Jae Youl Cho
    • Journal of Ginseng Research
    • /
    • 제48권2호
    • /
    • pp.211-219
    • /
    • 2024
  • Background: Recently, plant-derived exosome-like nanoparticles (PDENs) have been isolated, and active research was focusing on understanding their properties and functions. In this study, the characteristics and molecular properties of ginseng root-derived exosome-like nanoparticles (GrDENs) were examined in terms of skin protection. Methods: HPLC-MS protocols were used to analyze the ginsenoside contents in GrDENs. To investigate the beneficial effect of GrDENs on skin, HaCaT cells were pre-treated with GrDENs (0-2 × 109 particles/mL), and followed by UVB irradiation or H2O2 exposure. In addition, the antioxidant activity of GrDENs was measured using a fluorescence microscope or flow cytometry. Finally, molecular mechanisms were examined with immunoblotting analysis. Results: GrDENs contained detectable levels of ginsenosides (Re, Rg1, Rb1, Rf, Rg2 (S), Gyp17, Rd, C-Mc1, C-O, and F2). In UVB-irradiated HaCaT cells, GrDENs protected cells from death and reduced ROS production. GrDENs downregulated the mRNA expression of proapoptotic genes, including BAX, caspase-1, -3, -6, -7, and -8 and the ratio of cleaved caspase-8, -9, and -3 in a dose-dependent manner. In addition, GrDENs reduced the mRNA levels of aging-related genes (MMP2 and 3), proinflammatory genes (COX-2 and IL-6), and cellular senescence biomarker p21, possibly by suppressing activator protein-1 signaling. Conclusions: This study demonstrates the protective effects of GrDENs against skin damage caused by UV and oxidative stress, providing new insights into beneficial uses of ginseng. In particular, our results suggest GrDENs as a potential active ingredient in cosmeceuticals to promote skin health.

Depigmentation activity of plant extracts (Okyong-san)

  • Han, Sung-Chul;Lee, Young-Jin;Lee, Ki-Young;Kim, Yeon-Zu;Jin, Sang-Hyeop
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XIII)
    • /
    • pp.794-798
    • /
    • 2003
  • 천연추출물로서 미백 재료로 널리 쓰이고 있는 옥용산에 대해서 in vitro 미백활성을 UV 흡수능, tyrosinase 저해활성 그리고 free radical 소거활성을 측정함으로서 검정해 보았다. 옥용산 UV-B와 C 영역에 걸쳐서 높은 자외선 흡수능을 보이는 것으로 관찰이 되었으며 0.8 % 이상의 농도에서 80% 이상의 tyrosinase 저해활성을 가지는 것을 관찰하였다. 또한 조협, 승마, 감송, 정향, 찹쌀분과 옥용산의 추출물은 높은 free radical 소거능을 가지는 것으로 확인되었다.

  • PDF

Antioxidant and Skin Anti-Aging Effects of Marigold Methanol Extract

  • Kang, Chul Ho;Rhie, Sung Ja;Kim, Young Chul
    • Toxicological Research
    • /
    • 제34권1호
    • /
    • pp.31-39
    • /
    • 2018
  • The objective of this study was to evaluate the antioxidant and anti-aging effects of marigold methanol extract (MGME) in human dermal fibroblasts. Total polyphenolic and flavonoid contents in MGME were 74.8 mg TAE (tannic acid equivalent)/g and 85.6 mg RE (rutin equivalent)/g, respectively. MGME ($500{\mu}g/mL$) increased 1,1-diphenyl-2-picryl hydrazyl (DPPH) and 2,2'-azino-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical-scavenging, and superoxide dismutase (SOD)-like antioxidant activities by 36.5, 54.7, and 14.8%, respectively, compared with the control. At $1,000{\mu}g/mL$, these activities increased by 63.7, 70.6, and 20.6%, respectively. MGME ($100{\mu}g/mL$) significantly increased the synthesis of type 1 procollagen by 83.7% compared with control treatment. It also significantly decreased Matrix Metalloproteinase-2 (MMP-2) activity and MMP-1 mRNA expression by 36.5% and 69.5%, respectively; however, it significantly increased laminin-5 mRNA expression by 181.2%. These findings suggest that MGME could protect human skin against photo-aging by attenuating oxidative damage, suppressing MMP expression and/or activity as well as by stimulating collagen synthesis.

Early Detection of Peripheral Intravenous Infiltration Using Segmental Bioelectrical Impedance: Preliminary Study

  • Kim, Jaehyung;Jeong, Ihnsook;Baik, Seungwan;Jeon, Gyerok
    • 한국멀티미디어학회논문지
    • /
    • 제20권3호
    • /
    • pp.482-490
    • /
    • 2017
  • Early detection of infiltration is one of the most important tasks of nurses to minimize skin damage due to infiltration. For subjects receiving invasive intravenous treatment, the bioelectrical impedance (impedance) were measured in the frequency range of 5 to 500 kHz using bioelectrical impedance spectroscopy (BIS). After attaching electrodes at both ends of a transparent dressing mounted on the skin in which IV solution was infused into the vein, the change in impedance was measured as a function of time and frequency before and after infiltration. The experimental results are described as follows. When IV solution was properly infused into the vein, the impedance was nearly constant over time and decreased with increasing frequency. However, when infiltration occurred, the impedance decreased significantly and thereafter gradually decreased with time. In addition, impedance decreased with time for all applied frequencies. In this study, when IV solution penetrated into the surrounding skin and subcutaneous tissue by infiltration, impedance was quantitatively analyzed for as a function of time and frequency. This suggests a method for early detection of infiltration using BIS.

Anatomical variations of the innervated radial artery superficial palmar branch flap: A series of 28 clinical cases

  • Yang, Jae-Won
    • Archives of Plastic Surgery
    • /
    • 제47권5호
    • /
    • pp.435-443
    • /
    • 2020
  • Background The innervated radial artery superficial palmar branch (iRASP) flap was designed to provide consistent innervation by the palmar cutaneous branch of the median nerve (PCMN) to a glabrous skin flap. The iRASP flap is used to achieve coverage of diverse volar defects of digits. However, unexpected anatomical variations can affect flap survival and outcomes. Methods Cases in which patients received iRASP flaps since April 1, 2014 were retrospectively investigated by reviewing the operation notes and intraoperative photographs. The injury type, flap dimensions, arterial and neural anatomy, secondary procedures, and complications were evaluated. Results Twenty-eight cases were reviewed, and no flap failures were observed. The observed anatomical variations were the absence of a direct skin perforator, large-diameter radial artery superficial palmar branch (RASP), and the PCMN not being a single branch. Debulking procedures were performed in 16 cases (57.1%) due to flap bulkiness. Conclusions In some cases, an excessively large RASP artery was observed, even when there was no direct skin perforator from the RASP or variation in the PCMN. These findings should facilitate application of the iRASP flap, as well as any surgical procedures that involve potential damage to the PCMN in the inter-thenar crease region. Additional clinical cases will provide further clarification regarding potential anatomical variations.