• Title/Summary/Keyword: Skin damage

Search Result 669, Processing Time 0.029 seconds

The Alleviative Effect of White Tea Water Extract on Inflammation and Skin Barrier Damage (백차 열수추출물의 자외선 조사에 의한 피부염증 및 피부장벽손상 완화 효과)

  • Lee, Kyung-Ok;Kim, Young-Chul;Chang, Byung-Soo
    • Applied Microscopy
    • /
    • v.41 no.3
    • /
    • pp.197-204
    • /
    • 2011
  • To investigate the alleviative effect of white tea water extract on the inflammation and skin barrier damage, skin aging animal model was produced by the irradiation of UVB to the backs of hairless mice for 12 weeks. And then experimental materials were applied topically for 4 weeks. At the 28th day of experiment, positive control (PC, 0.01% retinoic acid treatment) and experimental groups (E1, 1% white tea water extract treatment; E2, 2% white tea water extract treatment) had significantly (p<0.001) lower values of both skin erythema index and transepidermal water loss (TEWL) than the control (C, saline treatment) group. The appearance of mast cell and the degree of its degranulation in dermal and subcutaneous layers were remarkably reduced in E1 and E2 groups compared to the C group. It is found that white tea water extract is effective in skin barrier damage and inflammation in hairless mouse.

Effect of skin dose by materials located in treatment field (방사선 치료 시 조사야 내에 위치할 수 있는 이물질이 체표선량에 미치는 영향)

  • Hong, Chae-Seon;Kim, Kyung-Tae;Ju, Sang-Gyu;Kim, Jong-Sik;Park, Young-Hwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.14 no.1
    • /
    • pp.59-64
    • /
    • 2002
  • Purpose : In radiotherapy, various materials are used to located in treatment field unintentionally. It increases the dose delivered to the skin by interactions of the X-ray within the materials and occurs unwanted skin reaction.(due to the dose build-up effect) This aim of the this study is to measure the increase in skin dose when 13 materials are located in treatment field. Methods : Photon beam measurements were made using an plane-parallel chamber (Markus, PTW-Freiburg) in a polystyrene phantom. skin dose were measured using various overlaying 13 materials. a fixed geometry of a $10{\times}10cm$ field, a SSD=100cm and photon energy 4MV on Varian CLINAC 600C accelerator were used for all measurements. Results : There is an increase in skin dose for all materials($16.4{\sim}160.1\%$). As a percentage of maximum dose, the lowest skin dose were measured for the underwear with silk($43.2\%$) and the highest were measured for the 100m1 fluid-bag($96.6\%$) Conclusion : There is a significant increase in skin dose with 13 materials in the treatment field. a significant increase in skin dose can occur which could produce unwanted skin reaction. considerations for placement of 13 materials to be outside the treatment field whenever possible should be used to keep skin dose to a minimum level.

  • PDF

Protection of UV-derived Skin Cell Damage and Anti-irritation Effect of Juniperus chinensis Xylem Extract (향나무추출물의 광손상으로부터 피부세포 보호와 자극완화 효과에 대한 연구)

  • 김진화;박성민;심관섭;이범천;표형배
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.1
    • /
    • pp.63-71
    • /
    • 2004
  • The human skin is constantly exposed to environmental irritants such as ultraviolet, smoke, chemicals. Free radicals and reactive oxygen species (ROS) caused by these environmental facts play critical roles in cellular damage. These irritants are in themselves damaging to the skin structure but they also participate the immensely complex inflammatory reaction. The purpose of this study was to investigate the skin cell protective effect of Juniperus chinensis xylem extract on the UV and SLS-induced skin cell damages. We tested free radical and superoxide scavenging effect in vitro. We found that Juniperus chinensis xylem extracts had potent radical scavenging effect by 98% at 100 $\mu\textrm{g}$/mL. Fluorometric assays of the proteolytic activities of matrix metalloproteinase-l(MMP-1, collagenase) were performed using fluorescent collagen substrates. UV A induced MMP-1 synthesis and activity were analyzed by enzyme-linked immunosorbent assay (ELISA) and gelatin-based zymography in skin fibroblasts. The extract of Juniperus chinensis showed strong inhibitory effect on MMP-1 activities by 97% at 100 $\mu\textrm{g}$/mL and suppressed the UVA induced expression of MMP-1 by 79% at 25 $\mu\textrm{g}$/mL. This extract also showed strong inhibition on MMP-2 activity in UVA irradiated fibroblast by zymography. We also examined anti-inflammatory effects by the determination test of proinflammatory cytokine, interleukin 6 in HaCaT keratinocytes. In this test Juniperus chinensis decreased expression of interleukin 6 about 30%. Expression of prostaglandin E$_2$, (PGE$_2$) after UVB irradiation was measured by competitive enzyme immunoassay (EIA) using PGE$_2$ monoclonal antibody. At the concentrations of 5-50 $\mu\textrm{g}$/mL of the extracts, the production of PGE$_2$ by HaCaT keratinocytes (24 hours after 10 mJ/$\textrm{cm}^2$ UVB irradiation) was significantly inhibited in culture supernatants (p〈0.05). The viability of cultured HaCaT keratinocytes was significantly reduced at the doses of above 10 mJ/$\textrm{cm}^2$ of UVB irradiation, but the presence of these extracts improved cell viability comparing to control after UVB irradiation. We also investigated the protective effect of this extract in sodium lauryl sulfate (SLS)-induced irritant skin reactions from 24 hour exposure. Twice a day application of the extract for reducing local inflammation in human skin was done. Irritant reactions were assessed by various aspects of skin condition, that is, erythema (skin color reflectance) and transepidermal water loss (TEWL). After 5 days the extract was found to reduce SLS-induced skin erythema and improve barrier regeneration when compared to untreated symmetrical test site. In conclusion, our results suggest that Juniperus chinensis can be effectively used for the prevention of UV and SLS-induced adverse skin reactions such as radical production, inflammation and skin cell damage.

Photoprotection effect of Pu'er tea and Curcuma longa L. extracts against UV and blue lights

  • Doyeong Son;Ji-Su Jun;KwangWon Hong
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.106-113
    • /
    • 2023
  • Plant extracts have been studied due to their potential as photoprotective agents against UV and blue light exposure. Previous studies have revealed that several plant extracts have photoprotection capacities and synergistic effects with synthetic products. However, such results for pu'er tea and Curcuma longa L. have not been reported yet for a cosmetic formulation. Thus, the objective of this study was to evaluate photoprotection capacities of pu'er tea and C. longa L. extracts for a sunscreen compound. The pu'er tea extract improved sun protection factor value of 2-ethyl-hexyl methoxycinnamate (a synthetic sunscreen compound) by 46% and showed a high antioxidant capability that could help skin recover from photo-induced damage. C. longa L. extract also showed a potential to protect skin from blue light-induced damage because it not only had a maximum absorption peak at the blue light range, but also protected human fibroblasts from blue light-induced damage. The addition of both extracts shifted the critical wavelength of 2-ethyl-hexyl methoxycinnamate from 350 nm to 386 nm, giving it a broad-spectrum feature. Thus, pu'er tea and C. longa L. extracts may enhance the photoprotection ability of synthetic sunscreen products.

Red ginseng oil promotes hair growth and protects skin against UVC radiation

  • Truong, Van-Long;Keum, Young-Sam;Jeong, Woo-Sik
    • Journal of Ginseng Research
    • /
    • v.45 no.4
    • /
    • pp.498-509
    • /
    • 2021
  • Background: A wide range of environmental factors, such as diseases, nutritional deficiencies, ageing, hormonal imbalances, stress, and ultraviolet (UV) radiation, may affect the structure and function of the skin that covers the entire surface of the human body. In this study, we investigated roles of red ginseng oil (RGO) in enhancing skin functions, including hair growth and skin protection, using mouse models. Methods: For hair growth experiment, shaved dorsal skins of C57BL/6 mice were topically applied with vehicle, RGO, RGO's major compounds, or minoxidil for consecutive 21 days and skin tissues were examined the hair growth promoting capacity. For skin protection experiment, SKH-1 hairless mice were topically applied with vehicle or RGO twice a day for three days prior to exposure to UVC radiation at 20 kJ/cm2. Skin tissues were collected to evaluate skin protective effects of RGO. Results: Topical application of RGO to C57BL/6 mice effectively promoted hair regeneration by inducing early telogen-to-anagen transition and significantly increasing the density and bulb diameter of hair follicles. Major compounds, including linoleic acids and β-sitosterol, contributed to RGO-promoted hair growth. Treatment with RGO as well as its major components upregulated expression of hair growth-related proteins. Furthermore, in SKH-1 hairless mice, RGO had a protective effect against UVC-induced skin damage by inhibiting inflammation and apoptosis, as well as inducing cytoprotective systems. Conclusion: These data suggest that RGO may be a potent agent for improving skin health and thereby preventing and/or treating hair loss and protecting skin against UV radiation.

Non-invasive Skin Barrier Lipid Packing Analysis Using FT-IR and Study of Cosmetic Formulation for Damaged Barrier (FT-IR을 활용한 비 침습적 피부 장벽 지질 패킹 분석과 손상된 장벽의 개선 제형 연구)

  • Kim, Hye Jin;Kim, Sunyoung;Lee, Seol-Hoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.3
    • /
    • pp.307-317
    • /
    • 2020
  • The barrier structure of the skin's epidermis is a key structure to prevent the loss of water inside the body and the invasion of foreign substances, and is composed of keratinocytes and intercellular lipids. At this time, the intercellular lipids of the skin barrier has the strongest structure when packed in an orthorhombic structure. However, it is damaged by various external causes and changes to a hexagonal structure. This change in physical structure can be analyzed non-invasively by analyzing the signal of the CH2-CH2 scissoring band of lipids using FT-IR. In this study, SDS was treated on porcine skin to construct a skin barrier damage model, and the degree of change in packing structure was quantified by analyzing FT-IR signals. We then judged whether the barrier of the damage model was recovered according to the treatment of the cosmetic formulation. From these results, an indirect method of measuring the water evaporation of the skin barrier to date can be supplemented. In addition, physical changes in the structure of the skin barrier can be utilized in a direct and efficient manner to identify the function and verify the formulation of various materials.

Effects of Oral Intake of Kimchi-Derived Lactobacillus plantarum K8 Lysates on Skin Moisturizing

  • Kim, Hangeun;Kim, Hye Rim;Jeong, Bong jun;Lee, Seung Su;Kim, Tae-Rahk;Jeong, Ji Hye;Lee, Miyeong;Lee, Sinai;Lee, Jong Suk;Chung, Dae Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.74-80
    • /
    • 2015
  • Skin is the soft outer covering of vertebrates that provides protection from pathogenic infection, physical damage, or UV irradiation, and controls body temperature and water content. In this study, we examined the effects of oral intake of kimchi-derived Lactobacillus plantarum K8 lysates on skin moisturizing. In an in vitro study, we observed that the hyaluronic acid content increased in HaCaT cells treated with L. plantarum K8 lysates. Oral administration of L. plantarum K8 lysates effectively attenuated the horny layer formation and decreased epidermal thickening in DNCB-treated SKH-1 hairless mice skin. The damage to barrier function was reduced after 8 weeks of oral administration of L. plantarum K8 lysates as compared with that in the atopic dermatitis mice. For the test with volunteers, we manufactured experimental candy containing 2.1% L. plantarum K8 lysates, while control candy did not contain bacterial lysate. A significant increase in hydration in the experimental candy-administered group as compared with the control candy-administered group was observed on the face after 4 and 8 weeks, and on the forearm after 4 weeks. Decreases in horny layer thickness and TEWL value were observed on the face and forearm of the experimental group. Together, the in vitro cell line and in vivo mouse studies revealed that L. plantarum K8 lysates have a moisturizing effect. A clinical research study with healthy volunteers also showed an improvement in barrier repair and function when volunteers took L. plantarum K8 lysates-containing candy. Thus, our results suggest that L. plantarum K8 lysates may help to improve skin barrier function.

Effect of $Panax$ $ginseng$ C.A. Meyer Extract (Ginseol K-b1) on UVB-induced Skin Damage in Hairless Mice (Hairless Mice에서 UVB로 유도된 피부손상에 인삼추출물(Ginseol K-b1)이 미치는 영향)

  • Chang, Jeong-Hwa;Hwang, Se-Hee;Lee, Eun-Ju;Ohto, Nobuaki;Lee, Jin-Hee
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.22 no.2
    • /
    • pp.224-230
    • /
    • 2012
  • To investigate the effect of Panax ginseng C.A. Meyer extract (Ginseol K-b1), on skin functionality, we evaluated skin appearance and properties, such as wrinkle formation, skin moisture content, and skin elasticity in the skin of hairless mice damaged by UV irradiation. In addition, the effect of Ginseol K-b1 on collagen synthesis in human dermal fibroblasts was investigated. Female hairless mice were orally administered Ginseol K-b1 for 10 weeks with UV irradiation. Wrinkle formation in the Ginseol K-b1-treated group was significantly suppressed compared to the UV-irradiated group. Skin properties, including skin moisture content and elasticity, of the Ginseol K-b1-treated group were better than those of the control group. In the human fibroblast cells, Ginseol K-b1 treatment enhanced cell proliferation and significantly stimulated collagen synthesis. These results suggest that Ginseol K-b1 is a potent ingredient with anti-aging effects.

Experimental studies of damage to aircraft skin under the influence of raindrops

  • Minggong Sha;Ying Sun;Li Yulong;Vladimir I. Goncharenko;Vladimir S. Oleshko;Anatoly V. Ryapukhin;Victor M. Yurov
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.6
    • /
    • pp.555-572
    • /
    • 2023
  • Airplanes in flight collide with raindrops, and the leading edges of the airframe can be damaged when colliding with raindrops. A single waterjet testing platform was created to study rain erosion damage. Carbon fiber samples with three types of skins were studied and the mechanical properties were measured using a nanoindentation instrument. The research results show that the impact force on the sample increases with the continuous increase in the impact speed of raindrops, which leads to an increase in the damage area. Sheathing with low surface roughness is more damaged than other sheathings due to its rougher surface, and the result proves that surface roughness has a more significant effect on rain erosion damage to sheathings compared to their hardness.

ECS Modulating Effect of Scutellaria baicalensis Extract on inflammation relief in atopic dermatitis-induced mice (황금 (Scutellaria baicalensis) 추출물의 ECS조절을 통한 아토피피부염 염증 완화 효과)

  • Ahn, Sang Hyun;Kim, Ki Bong
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.35 no.3
    • /
    • pp.118-127
    • /
    • 2021
  • Objective The purpose of this study was to confirm the effect of Scutellaria baicalensis extract on skin damage recovery and inflammation relief in atopic dermatitis-induced mice through Endocannabinoid system (ECS) control. Methods 6-week-old Balb/C mice were divided into control group (Ctrl), atopic dermatitis induced group (ADE), palmitoylethanolamide (PEA) administered group after atopic dermatitis induced (PEAT), and Scutellaria baicalensis extract administered group after atopic dermatitis induced (SBT). Seven animals were assigned for each group. After drug administration for 3 weeks after inducing atopic dermatitis, Claudin and 8-OHdG were observed to confirm the recovery of the skin damage in each group. To confirm ECS regulation, CB1, CB2, and GPR55 were observed. To confirm the anti-inflammatory effect, Fc ε receptor, and MMP-9 was observed. Results Claudin positive reaction was significantly increased in SBT compared to ADE and PEAT. 8-OHdG positive reaction was significantly decreased in SBT compared to ADE and PEAT. CB1, CB2, and GPR55 positive responses were significantly increased in SBT compared to ADE and PEAT. Fc ε receptor and MMP-9 positivity were significantly decreased in SBT compared to ADE and PEAT. Conclusion It was confirmed that the Scutellaria baicalensis extract can reduce the inflammation of atopic dermatitis by restoring the structural damage of the skin lipid barrier through ECS activity.