• Title/Summary/Keyword: Skin conductance reaction

Search Result 9, Processing Time 0.021 seconds

The Effect of Galvanic Vestibular Stimulation on Autonomic Nervous System Response (평류안뜰자극이 자율신경성 반응에 미치는 영향)

  • Moon, Hwa-Young;Kang, Sol;Kim, Hwa-Sung;Soon, Yu-Ri;Huh, So-Young;Lee, Jeong-Woo
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.8 no.2
    • /
    • pp.19-24
    • /
    • 2010
  • Purpose : This study aims to examine the influences of galvanic vestibular stimulation on autonomic reaction of normal adults. Methods : Participants in this research totaled 28 (14 men and 14 women). Galvanic vestibular stimulation was conducted with a binaural electrode configuration for 60 sec. Galvanic vestibular stimulation measurements were conducted with the subjects in a prone position. Measured items included skin conductance, blood flow, pulse rate, and respiratory rate. Measurements were repeated for a total of five times, before application, during application, after application, 5 minutes after application and 10 minutes after application. Results : Skin conductance reaction showed statistically significant differences in changes depending on time after galvanic vestibular stimulation and there were statistically differences in changes of blood flow, pulse rate and respiratory rate after galvanic vestibular stimulation. Conclusion : Blood flow, pulse rate and respiratory rate of autonomic reactions were not influenced by galvanic vestibular stimulation, but skin conductance reaction was influenced by it and it was found that it was reduced during and after stimulation rather than before stimulation. Consequently, it was considered that galvanic vestibular stimulation affected the autonomic reaction.

PHYSIOLOGICAL INDICATORS OF EMOTION AND ATTENTION PROCESSES DURING AFFECTIVE AND ORIENTING AUDITORY STIULATION (청각자극에 의해 유발된 정서 및 주의반응의 생리적 지표)

  • Estate M. Sokhadze
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06c
    • /
    • pp.291-296
    • /
    • 1998
  • In the experiment carried out on 20 college students, recorded were frontal, temporal and occipital EEG, skin conductance response, skin conductance level, heart rate and respiration rate during listening to two music fragments with different affective valences and white noise administered immediately after negative visual stimulation. Analysis of physiological patterns observed during the experiment suggests that affective auditory stimulation with music is able to selectively modulate autonomic and cortical activity evoked by preceding aversive visual stimulation and to restore initial baseline levels. On other hand, physiological responses to white noise, which does not possess emotion-eliciting capabilities, evokes response typical for orienting reaction after the onset of a stimulus and is rapidly followed by habituation. Observed responses to white noise were similar to those specific to attention only and had no evidence for any emotion-related processes. Interpretation of the obtained data is considered in terms of the role of emotional and orienting significance of stimuli, dependence of effects on the background physiological activation level and time courses of attention and emotion processes. Physiological parameters are summarized with regard to their potential utility in differentiation of psychological processes induced by auditory stimuli.

  • PDF

Analysis of Skin Conductance Level for Cognitional and Emotional Responses associated with Unexpected Situation during Driving (운전 중 돌발 상황과 관련된 인지 처리 및 감정 반응의 피부전도수준 해석)

  • Lee, Su-Jeong;Yang, Jae-Woong;Kim, Ji-Hye;Choi, Mi-Hyun;Mun, Kyung-Ryoul;Kim, Han-Soo;Choi, Jin-Seung;Ji, Doo-Hwan;Min, Byung-Chan;Tack, Gye-Rae;Chung, Soon-Cheol
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.6
    • /
    • pp.869-874
    • /
    • 2010
  • The purpose of this study was to analyze the skin conductance level (SCL) induced by unexpected situation which reflected the emotional and cognitional responses during driving. The participants included 57 college graduates; 28 males aged $24.5{\pm}1.3$ with $2.3{\pm}1.5$ years of driving experiences and 29 females aged $23.6{\pm}2.6$ with $2.2{\pm}1.7$ years of driving experience. Reaction time of brake, averaged SCL, maximum SCL, and rising time to maximum amplitude were measured. They were analysed according to condition (crash, non-crash) and gender (male, female). The reaction time of brake was more faster and averaged SCL was greater during non-crash condition than during crash condition. There were no significant differences between male and female drivers in the reaction time of brake and averaged SCL whether or not it crash. There were no significant differences between crash and non-crash conditions in the maximum SCL and rising time to maximum amplitude, but there were significant differences between male and female in them. These results support the hypothesis that averaged SCL is more related to cognitional response and maximum SCL and rising time to maximum amplitude are more related to emotional responses.

First-Person Shooter Player Analysis System Based on Biometrics (생체 정보 기반 1인칭 슈팅 게임 플레이어 분석 시스템)

  • Kim, Dong-Gyun;Bae, Byung-Chull;Kang, Shin-Jin
    • Journal of Korea Game Society
    • /
    • v.17 no.6
    • /
    • pp.29-38
    • /
    • 2017
  • Predicting the user's reaction to the game at the stage of developing the game is important because it is related to the popularity of the game. In this paper, we propose a system that can collect and analyze game user's biometric information in a non-invasive way. To this end, we developed a mouse with skin conductance, pressure, gyroscope, and accelerometer sensor using Arduino. In order to verify the usefulness of this system, the subject was experimented with playing the first person shooter game with this mouse. We analyzed the gameplay videos recorded during Blizzard's 'OverWatch' and the bio-information collected from various sensors in the mouse.

Difference of 3-back task performance ability due to levels of arousal (각성 수준에 따른 3-back 과제 수행 능력의 차이)

  • Lee, Su-Jeong;Min, Yoon-Ki;Kim, Bo-Seong;Choi, Mi-Hyun;Yang, Jae-Woong;Choi, Jin-Seung;Jun, Jae-Hoon;Tack, Gye-Rae;Min, Byung-Chan;Chung, Soon-Cheol
    • Science of Emotion and Sensibility
    • /
    • v.12 no.4
    • /
    • pp.373-380
    • /
    • 2009
  • This study tried to investigate how three levels of arousal affect performance of a 3-back task. Ten university male (age $25.7{\pm}1.5$) and ten female (age $24.5{\pm}1.8$) students participated in this experiment. Using pictures selected from a group test, three levels of arousal, i.e. tensed, neutral, and relaxed emotions, were induced. Each subject was run through the procedure three times, once for each arousal level. The procedure consisted of six phases for each arousal condition Rest 1(2 min), Picture 1(presenting emotion arousing photos for 2 min), 3-back task 1(2 min), Picture 2(presenting emotion arousing photos for 2 min), 3-back task 2(2 min), and Rest 2(2 min). Skin conductance level(SCL) of electrothermal activity was also measured during all phases of the experiment. The accuracy rate of 3-back task performance was the highest at a neutral emotional state, followed by relaxed and then tensed emotional state. There was no difference in reaction time(RT) among the three levels of arousal. SCL was the highest at a tensed emotional state, followed by neutral emotional state and then relaxed emotional state. Based on the results, it could be inferred that tension, induced by stimuli unrelated to cognitive tasks, decreases the ability to perform cognitive tasks.

  • PDF

The Effects of Age, Gender, and Situational Factors on Take-Over Performance in Automated Driving (연령, 성별 및 상황적 요인이 자율주행 제어권 전환 수행도에 미치는 영향)

  • Myoungouk, Park;Joonwoo, Son
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.70-76
    • /
    • 2022
  • This paper investigates the effects of age, gender, and situational factors on take-over performance in automated driving. The existing automated driving systems still consider a driver as a fallback-ready user who is receptive to take-over requests. Thus, we need to understand the impact of situations and human factors on take-over performance. 34 drivers drove on a simulated track, consisting of one baseline and four event scenarios. The data, including the brake reaction time and the standard deviation of lane position, and physiological data, including the heart rate and skin conductance, were collected. The analysis was performed using repeated-measures ANOVA. The results showed that there were significant age, gender, and situational differences in the takeover performance and mental workload. Findings from this study indicated that older drivers may face risks due to their degraded driving performance, and female drivers may have a negative experience on automated driving.

A Study Concerning Analysis of Arousal State of locomotive Engineering During Operating Train (열차 운행 중인 기관사의 각성상태 분석에 관한 연구)

  • Yang, Heui-Kyung;Lee, Jeong-Whan;Lee, Young-Jae;Lee, Jae-Ho;Lim, Min-Gyu;Baek, Jong-Hyen;Song, Yong-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.6
    • /
    • pp.891-898
    • /
    • 2012
  • The study for the passenger's comfortableness of vehicles and the arousal of car drivers has been done widely. On the other hand, there are few studies for the locomotive engineers. Human error means that the mistakes made by human, recently it receives attention in the field of safety engineering and human engineering. Comparing the operating condition of train with car, because of the simplification of the visual stimulus, the arousal level on the train goes down easily. The arousal level down makes judgement down, the accident risk from human error is getting bigger. In this study, we measured bio-signals(ECG, EDA, PPG, respiration and EEG) from 6 locomotive engineers to evaluate their arousal state while they operated the train. Also we recorded the 3 axes acceleration signal showing the vibration state of train. Also, the existence of tunnels were simultaneously measured. At the station section where the train speed goes down, the size of vector's sum decreases because of reduced vibration. Beta component in EEG tends to increase at the entering point of each station and tunnel. It is due to the arousal reaction and tension growth. The mean SCR(skin conductance response) was more increased in neutral section. As the button control movement (body movement) increases in the neutral section, it is appeared that SCR increase. RR interval tends to gradually increase during train operation for 1 hour 40 minutes. However, It tends to sharply decrease at the stop station because strong concentration needed to stop train on the exact point. The engineer's arousal reaction can be checked through analysing the bio-signal change during train operation. Therefore, if this analysing result is adopted to the sleepiness prevention caution system, it will be useful for the safety train operation.

Emotional Preference Modulates Autonomic and Cortical Responses to Tactile Stimulation (촉각자극에 의한 자율신경계 및 뇌파 반응과 감성)

  • Estate Sokhadze;Lee, Kyung-Hwa;Imgap Yi;Park, Sehun;Sohn, Jin-Hun
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1998.11a
    • /
    • pp.225-229
    • /
    • 1998
  • The purpose of the current study was comparative analysis of autonomic and electrocortical responses to passive and active touch of the tektites with different subjective emotional preference. Perspective goal of the project is development of a template for classification of tactile stimuli according to subjective comfort and associated physiological manifestations. The study was carried out on 36 female college students. Physiological signals were acquired by Grass and B10PAC 100 systems with AcqKnowledge III software. Frontal, parietal and occipital EEG (relative power spectrum /percents/ of EEG bands - delta, theta, slow and fast alpha, low and fast beta), and autonomic variables, namely heart rate (HR), respiratory sinus arrhythmia (RSA), pulse transit time (PTT), respiration rate (RSP) and skin conductance parameters (SCL, amplitude, rise time and number of SCRs) were analyzed for rest baseline and stimulation conditions. Analysis of the overall pattern of reaction indicated that autonomic response to tactile stimulation was manifested in a form of moderate HR acceleration, RSP increase, RSA decrease (lowered vagal tone), decreased n and increased electrodermal activity (increased SCL, several SCRs) that reflects general sympathetic activation. Parietal EEG effects (on contra-lateral side to stimulated hand) were featured by short-term alpha-blocking, slightly reduced theta and significantly increased delta and enhanced fast beta activity with few variations across stimuli. The main finding of the study was that most and least preferred textures exhibited significant differences in autonomic (HR, RSP, PTT, SCR, and at less extent in RSA and SCL) and electrocortical responses (delta, slow and fast alpha, fast beta relative power). These differences were recorded both in passive and active stimulation modes, thus demonstrating reproducibility of distinction between most and least emotionally preferred tactile stimuli, suggesting influence of psychological factors, such as emotional property of stimulus, on physiological outcome. Nevertheless, development of sufficiently sensitive .and reliable template for classification of emotional responses to tactile stimulation based on physiological response pattern may require more extensive empirical database.

  • PDF

Differences of Driving Performance and Physiological Responses Between Young Male and Female Drivers for Unexpected Situation Using a Ggraphic Vehicle Ssimulator (화상 자동차 시뮬레이터를 이용한 돌발 상황 발생 시 젊은 남녀 운전자의 운전 수행 능력과 생리 반응의 차이에 관한 연구)

  • Min, Byung-Chan;Kang, Jin-Kyu;Min, Soo-Young;Lee, Su-Jeong;Kim, Hyo-Seong;Yang, Jae-Woong;Choi, Mi-Hyun;Chung, Soon-Cheol;Lim, Dae-Woon;Lee, Jeong-Whan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.1
    • /
    • pp.108-113
    • /
    • 2010
  • The purpose of this study was to investigate the differences of driving performance and physiological responses between young male and female drivers for unexpected situation using a graphic vehicle simulator. The participants included 20 college graduates; 23 males aged $24.3\;{\pm}\;1.4$ with $2.3\;{\pm}\;1.5$ years of driving experiences and 23 females aged $23.2\;{\pm}\;2.1$ with $2.2\;{\pm}\;1.7$ years of driving experience. The participants were instructed to drive the vehicle simulator which was programed unexpected situation for two minutes. The physiological measurements used were autonomic responses of electrocardiogram (ECG) and skin conductance response (SCR), and the driving performance measurements used were the reaction time of break and the rate of collision for unexpected situation. Results showed that there were no significant differences between male and female drivers in the reaction time of break and the rate of collision for unexpected situation. Averaged R-R interval decreased and LF IHF and SCL amplitude increased for unexpected situation. There were no significant differences between male and female in the averaged R-R interval and LF/HF for unexpected situation. On the other hand, SCL amplitude of female was higher than male. Rising time to maximum SCL amplitude of female was longer than male.