• Title/Summary/Keyword: Skeletal muscle differentiation

Search Result 115, Processing Time 0.025 seconds

Growth factors improve the proliferation of Jeju black pig muscle cells by regulating myogenic differentiation 1 and growth-related genes

  • Park, Jinryong;Lee, Jeongeun;Song, Ki-Duk;Kim, Sung-Jo;Kim, Dae Cheol;Lee, Sang Cheol;Son, Young June;Choi, Hyun Woo;Shim, Kwanseob
    • Animal Bioscience
    • /
    • v.34 no.8
    • /
    • pp.1392-1402
    • /
    • 2021
  • Objective: The growth rate of pigs is related to differentiation and proliferation of muscle cells, which are regulated by growth factors and expression of growth-related genes. Thus, the objective of this study was to establish optimal culture conditions for Jeju black pig (JBP) muscle cells and determine the relationship of various factors involved in muscle growth with the proliferation of JBP muscle cells. Methods: Muscles were taken from the femur skeletal muscle of JBP embryos. After isolation of the muscle cells, cells were cultured in a 6-well plate under four different culture conditions to optimize culture conditions for JBP muscle cells. To analyze proliferation rate of JBP muscle cells, these muscle cells were seeded into 6-well plates at a density of 1.5×105 cells per well and cultured for 3 days. Western blot and quantitative real-time polymerase chain reaction were applied to verify the myogenic differentiation 1 (MyoD) expression and growth-related gene expression in JBP muscle cells, respectively. Results: We established a muscle cell line from JBP embryos and optimized its culture conditions. These muscle cells were positive for MyoD, but not for paired box 7. The proliferation rate of these muscle cells was significantly higher in a culture medium containing bFGF and epidermal growth factor + basic fibroblast growth factor (EGF+bFGF) than that without a growth factor or containing EGF alone. Treatment with EGF and bFGF significantly induced the expression of MyoD protein, an important transcription factor in muscle cells. Moreover, we checked the changes of expression of growth-related genes in JBP muscle cells by presence or absence of growth factors. Expression level of collagen type XXI alpha 1 gene was changed only when EGF and bFGF were added together to culture media for JBP muscle cells. Conclusion: Concurrent use of EGF and bFGF increased the expression of MyoD protein, thus regulating the proliferation of JBP muscle cells and the expression of growth-related genes.

Effect of Chungsimyeonjaeum on myocardiac cell injury in mouse myoblast $C_2Cl_{12}$ cells (청심연자음(淸心蓮子飮)이 Mouse유래 $C_2Cl_{12}$세포주에서 심근세포 손상의 보호 효과)

  • Lee, Sang-Heon;Park, Chi-Sang
    • The Journal of Korean Medicine
    • /
    • v.27 no.3 s.67
    • /
    • pp.26-37
    • /
    • 2006
  • Determination and differentiation of cells in the skeletal muscle lineage is positively regulated by cell-cell contact. Differentiation proteins proposed to mediate this effect include both classical MyoD and MEF members; potential interactions between the promyogenic activities of these classes of protein, however, are unknown. We show here that MyoD and MEF, two promyogenic family members that relate to each other in a cis fashion, form interactions with MyoD and MEF. These proteins contain myosin-heavy chainsand are enriched at sites of cell-cell contact between myoblasts. Therefore, in differentiation of MyoD and MEF from Chungsimyeonjaeum interact dependently, suggesting that the interactions occur in a cis fashion; consistent with this conclusion, MyoD-mediated differentiation is required for myoblasts to occur by Chungsimyeonjaeum. Inhibition in myoblasts of a MyoD by Staurosporine in its ability to associate with MEF interferes with differentiation as assessed by morphological and transcription levels, suggesting that this interaction is functionally important in myogenesis. Also, some of the differentiation-mediated proteins that are required for myogenesis seem to be based on interdependent activities of the promyogenic classical smad-subfamily.

  • PDF

Functional Cardiomyocytes Formation Derived from Mouse Embryonic Stem Cells

  • Shin, Hyun-Ah;Lee, Keum-Sil;Cho, Hwang-Yoon;Park, Sae-Young;Kim, Eun-Young;Lee, Young-Jae;Park, Se-Pill;Lim, Jin-Ho
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.100-100
    • /
    • 2003
  • Pluripotent embryonic stem (ES) cells differentiate spontaneously into beating cardiomyocytes via embryo-like aggregates. We describe the use of mouse embryonic stem (mES03) cells as a reproducible differentiation system for cardiomyocyte. To induce cardiomyocytic differentiation, mES03 cells were dissociated and allowed to aggregate (EB formation) at the presence of 0 75% dimethyl sulfoxide (DMSO) for 4 days and then another 4 days without DMSO (4+/4-). Thus treated EBs were plated onto gelatin-coated dish for differentiation. Spontaneously contracting colonies which appeared in approximately 4-5 days upon differentiation. Expression of cardiac-specific genes were determined by RT-PCR. Rebust expression of myosin light chain (MLC-2V), cardiac myosin heavy chain $\alpha$, cardiac muscle heavy polypeptide 7 $\beta(\beta$-MHC), cardiac transcription factor GATA4 and skeletal muscle-specific ${\alpha}_1$-subunit of the L-type calcium channel (${\alpha}_1 CaCh_{sm}$) were detected as early as 8 days after EB formation, but message of cardiac muscle-specific $\alpha$$_1$-subunit of the L-type calcium channel (${\alpha}_1$CaCh) were revealed at a low level. Strikingly, the expression of atrial natriuretic factor (ANF) was not detected. When spontaneous contracting cell masses were examined their electrophysiological features by patch-clamp technique, it showed ventricle-like action potential 17 days after the EB formation. This study indicates that mES03 cell-derived cardiomyocytes displayed biochemical and electrophysiological properties of cardiomyocytes and DMSO enhanced development of cardiomyocytes in 4+/4- method.

  • PDF

Effects of polygalacin D extracted from Platycodon grandiflorum on myoblast differentiation and muscle atrophy (길경에서 추출한 polygalacin D가 근원세포 분화 및 근위축에 미치는 영향)

  • Eun-Ju Song;Ji-Won Heo;Jee Hee Jang;Eonmi Kim;Yun Hee Jeong;Min Jung Kim;Sung-Eun Kim
    • Journal of Nutrition and Health
    • /
    • v.56 no.6
    • /
    • pp.602-614
    • /
    • 2023
  • Purpose: The balance between synthesis and degradation of proteins plays a critical role in the maintenance of skeletal muscle mass. Mitochondrial dysfunction has been closely associated with skeletal muscle atrophy caused by aging, cancer, and chemotherapy. Polygalacin D is a saponin derivative isolated from Platycodon grandiflorum (Jacq.) A. DC. This study aimed to investigate the effects of polygalacin D on myoblast differentiation and muscle atrophy in association with mitochondrial function in in vitro and in zebrafish models in vivo. Methods: C2C12 myoblasts were cultured in differentiation media containing different concentrations of polygalacin D, followed by the immunostaining of the myotubes with myosin heavy chain (MHC). The mRNA expression of markers related to myogenesis, muscle atrophy, and mitochondrial function was determined by real-time quantitative reverse transcription polymerase chain reaction. Wild type AB* zebrafish (Danio rerio) embryos were treated with 5-fluorouracil, leucovorin, and irinotecan (FOLFIRI) with or without polygalacin D, and immunostained to detect slow and fast types of muscle fibers. The Tg(Xla.Eef1a1:mitoEGFP) zebrafish expressing mitochondria-targeted green fluorescent protein was used to monitor mitochondrial morphology. Results: The exposure of C2C12 myotubes to 0.1 ng/mL of polygalacin D increased the formation of MHC-positive multinucleated myotubes (≥ 8 nuclei) compared with the control. Polygalacin D significantly increased the expression of MHC isoforms (Myh1, Myh2, Myh4, and Myh7) involved in myoblast differentiation while it decreased the expression of atrophic markers including muscle RING-finger protein-1 (MuRF1), mothers against decapentaplegic homolog (Smad)2, and Smad3. In addition, polygalacin D promoted peroxisome proliferator-activated receptor-gamma coactivator (Pgc1α) expression and reduced the level of mitochondrial fission regulators such as dynamin-1-like protein (Drp1) and mitochondrial fission 1 (Fis1). In a zebrafish model of FOLFIRI-induced muscle atrophy, polygalacin D improved not only mitochondrial dysfunction but also slow and fast muscle fiber atrophy. Conclusion: These results demonstrated that polygalacin D promotes myogenesis and alleviates chemotherapy-induced muscle atrophy by improving mitochondrial function. Thus, polygalacin D could be useful as nutrition support to prevent and ameliorate muscle wasting and weakness.

Maternal undernutrition alters the skeletal muscle development and methylation of myogenic factors in goat offspring

  • Zhou, Xiaoling;Yan, Qiongxian;Liu, Liling;Chen, Genyuan;Tang, Shaoxun;He, Zhixiong;Tan, Zhiliang
    • Animal Bioscience
    • /
    • v.35 no.6
    • /
    • pp.847-857
    • /
    • 2022
  • Objective: The effects of maternal undernutrition during midgestation on muscle fiber histology, myosin heavy chain (MyHC) expression, methylation modification of myogenic factors, and the mammalian target of rapamycin (mTOR) signaling pathway in the skeletal muscles of prenatal and postnatal goats were examined. Methods: Twenty-four pregnant goats were assigned to a control (100% of the nutrients requirement, n = 12) or a restricted group (60% of the nutrients requirement, n = 12) between 45 and 100 days of gestation. Descendants were harvested at day 100 of gestation and at day 90 after birth to collect the femoris muscle tissue. Results: Maternal undernutrition increased (p<0.05) the fiber area of the vastus muscle in the fetuses and enhanced (p<0.01) the proportions of MyHCI and MyHCIIA fibers in offspring, while the proportion of MyHCIIX fibers was decreased (p<0.01). DNA methylation at the +530 cytosine-guanine dinucleotide (CpG) site of the myogenic factor 5 (MYF5) promoter in restricted fetuses was increased (p<0.05), but the methylation of the MYF5 gene at the +274,280 CpG site and of the myogenic differentiation (MYOD) gene at the +252 CpG site in restricted kids was reduced (p<0.05). mTOR protein signals were down-regulated (p<0.05) in the restricted offspring. Conclusion: Maternal undernutrition altered the muscle fiber type in offspring, but its relationship with methylation in the promoter regions of myogenic genes needs to be elucidated.

High glucose induces differentiation and adipogenesis in porcine muscle satellite cells via mTOR

  • Yue, Tao;Yin, Jingdong;Li, Fengna;Li, Defa;Du, Min
    • BMB Reports
    • /
    • v.43 no.2
    • /
    • pp.140-145
    • /
    • 2010
  • The present study investigated whether the mammalian target of rapamycin (mTOR) signal pathway is involved in the regulation of high glucose-induced intramuscular adipogenesis in porcine muscle satellite cells. High glucose (25 mM) dramatically increased intracellular lipid accumulation in cells during the 10-day adipogenic differentiation period. The expressions of CCAAT/enhancer binding protein-$\alpha$ (C/EBP-$\alpha$) and fatty acid synthase (FAS) protein were gradually enhanced during the 10-day duration while mTOR phosphorylation and sterol-regulatory- element-binding protein (SREBP)-1c protein were induced on day 4. Moreover, inhibition of mTOR activity by rapamycin resulted in a reduction of SREBP-1c protein expression and adipogenesis in cells. Collectively, our findings suggest that the adipogenic differentiation of porcine muscle satellite cells and a succeeding extensive adipogenesis, which is triggered by high glucose, is initiated by the mTOR signal pathway through the activation of SREBP-1c protein. This process is previously uncharacterized and suggests a cellular mechanism may be involved in ectopic lipid deposition in skeletal muscle during type 2 diabetes.

Effect of Gender-Specific Adult Bovine Serum on Gene Expression During Myogenesis

  • Lee, Eun-Ju;Pokharel, Smritee;Kim, Jie-Hoe;Nam, Sang-Sup;Choi, In-Ho
    • Journal of Animal Science and Technology
    • /
    • v.54 no.3
    • /
    • pp.219-226
    • /
    • 2012
  • Gender specificity in muscle growth and development is well known. Genesis of muscle is dependent on proliferation and differentiation potential of resident myogenic satellite cells (MSCs) present in muscle fibers. Multipotential capacity of forming myocyte, osteocyte, and adipocyte like cell makes MSCs a unique stem cell. To understand the molecular mechanism involved in determination of muscle quality due to difference in hormone concentration of different gender of animals, MSCs were isolated from bovine skeletal muscle and cultured in male, female, and castrated serum supplemented media. DNA microarray used consisted of 24,000 spots with 70 mer oligo in each spot. A total of 88 genes were up-regulated and 551 genes were down-regulated by more than two fold. Among up-regulated gene, 33, 34, and 21 genes were found up-regulated in cells grown in male, female, and castrated serum, respectively. Interestingly, male serum showed 4, female 11 and castrated male showed 4 genes expressed highly in each gender. Further study on the highly up-regulated gene may unfold the mystery of gender specificity found in muscle development. Also, the identification of differentially expressed genes in gender-specific serum will add information on infrastructure of bovine genome research.

Inhibition of Myoblast Differentiation by Polyamine Depletion with Methylglyoxal Bis(guanylhydrazone)

  • Cho, Hwa-Jeong;Kim, Byeong-Gee;Kim, Han-Do;Kang, Ho-Sung;Kim, Chong-Rak
    • BMB Reports
    • /
    • v.28 no.3
    • /
    • pp.191-196
    • /
    • 1995
  • The role of polyamines in skeletal myoblast differentiation was investigated using the polyamine metabolic inhibitor methylglyoxal bis(guanylhydrazone)(MGBG). Concentrations of intracellular free spermidine and spermine increased 2 to 2.5-fold at the onset of myoblast fusion. The systhesis of actin, and creatine kinase activity both dramatically increased during myotube formation. However, MGBG at a concentration of 0.5 mM not only abolished the increase of intracellular free polyamines, but also reduced cell fusion to almost half the level of untreated cells, without noticeable morphological alteration. The production of actin, and creatine kinase activity were almost completely abolished by MGBG. The inhibition of myoblast fusion by MGBG was partially recovered with 0.1 mM of spermidine or spermine added externally. Results indicate that polyamines are necessary for normal myoblast differentiation. Since the first indication of myoblast differentiation is alignment of muscle cells and membrane fusion of adjacent cells, and since polyamine depletion completely inhibited the synthesis of actin, which might be associted with membranes, polyamine might be involved in myoblast differentiation through membrane reorganization events.

  • PDF

Skeletal myogenic differentiation of human periodontal ligament stromal cells isolated from orthodontically extracted premolars

  • Song, Minjung;Kim, Hana;Choi, Yoonjeong;Kim, Kyungho;Chung, Chooryung
    • The korean journal of orthodontics
    • /
    • v.42 no.5
    • /
    • pp.249-254
    • /
    • 2012
  • Objective: To investigate the stem cell-like characteristics of human periodontal ligament (PDL) stromal cells outgrown from orthodontically extracted premolars and to evaluate the potential for myogenic differentiation. Methods: PDL stromal cells were obtained from extracted premolars by using the outgrowth method. Cell morphological features, self-replication capability, and the presence of cell-surface markers, along with osteogenic, adipogenic, and chondrogenic differentiation, were confirmed. In addition, myogenic differentiation was induced by the use of 5-aza-2'-deoxycytidine (5-Aza) for DNA demethylation. Results: PDL stromal cells showed growth patterns and morphological features similar to those of fibroblasts. In contrast, the proliferation rates of premolar PDL stromal cells were similar to those of bone marrow and adipogenic stem cells. PDL stromal cells expressed surface markers of human mesenchymal stem cells (i.e., CD90 and CD105), but not those of hematopoietic stem cells (i.e., CD31 and CD34). PDL stromal cells were differentiated into osteogenic, adipogenic, and chondrogenic lineages. Myotube structures were induced in PDL stromal cells after 5-Aza pretreatment, but not in the absence of 5-Aza pretreatment. Conclusions: PDL stromal cells isolated from extracted premolars can potentially be a good source of postnatal stem cells for oromaxillofacial regeneration in bone and muscle.

Comparison of the Effects of Pharmacopuncture Extracts with Hominis placenta Pharmacopuncture and Wild Ginseng Pharmacopuncture on the Differentiation of C2C12 Myoblasts into Myotubes through Regulation of the AMPK/SIRT1 Signaling Pathway (자하거약침액과 산삼약침액의 C2C12 근아세포에서의 AMPK/SIRT1 신호전달을 통한 근 분화 유도 및 에너지 대사 증진 효과 비교)

  • Ji Hye Hwang;Hyo Won Jung
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.23 no.2
    • /
    • pp.60-68
    • /
    • 2023
  • Objectives: This study was conducted to compare the effects of Hominis placenta (Jahage, J) and wild ginseng (SanSam, S) pharmacopuncture drugs on muscle differentiation and energy metabolism regulation in C2C12 myotubes. Methods: The C2C12 myoblasts were differentiated into myotubes for 5 days by replacing in medium containing 2% horse serum and then treated with J and S pharmacopuncture extract at different concentrations for 24 hr. The expression of myosin heavy chain and energy metabolism-regulating factors, myosin heavy chain (MHC), nuclear respiratory factor-1 (NRF-1), and proliferator-activated receptor γ coactivator-1 alpha (PGC-1α) were determined in C2C12 myotubes by western blot. Additionally, the phosphorylation of AMPK and the expression of mitochondrial biogenesis, including sirtuin 1 (SIRT1) were determined in the myotubes. Results: As a result, treatment with J and S pharmacopuncture extract at 0.1 and 1 mg/mL increased the MHC expression in C2C12 myotubes compared with non-treated cells, but only S pharmacopuncture was shown a significant and distinct increase in the expression. Expression of TFAM and NRF-1 was also shown significant increases in S and J pharmacopuncture in C2C12 myotubes compared to non-treated cells. The phosphorylation of AMPK and the expression of PGC-1α and SIRT1 showed increased expression in S and J pharmacopuncture compared to non-treated cells. The effect of low-dose of J pharmacopuncture on the phosphorylated adenosine monophosphate-activated protein kinase (AMPK) and PGC-1α expression was greater than that of S pharmacopuncture. Conclusions: In conclusion, both J and S pharmacopuncture promote muscle differentiation in C2C12 myoblasts into myotubes and energy metabolism through the AMPK/SIRT1 signaling pathway. This indicates that the pharmacopuncture with tonic herbal medicines can help to improve skeletal muscle function.