DOI QR코드

DOI QR Code

Effects of polygalacin D extracted from Platycodon grandiflorum on myoblast differentiation and muscle atrophy

길경에서 추출한 polygalacin D가 근원세포 분화 및 근위축에 미치는 영향

  • Eun-Ju Song (Department of Food and Nutrition, Sookmyung Women's University) ;
  • Ji-Won Heo (Department of Food and Nutrition, Sookmyung Women's University) ;
  • Jee Hee Jang (Department of Biological Sciences, Sookmyung Women's University) ;
  • Eonmi Kim (National Institute for Korean Medicine Development) ;
  • Yun Hee Jeong (National Institute for Korean Medicine Development) ;
  • Min Jung Kim (Department of Biological Sciences, Sookmyung Women's University) ;
  • Sung-Eun Kim (Department of Food and Nutrition, Sookmyung Women's University)
  • 송은주 (숙명여자대학교 식품영양학과) ;
  • 허지원 (숙명여자대학교 식품영양학과) ;
  • 장지희 (숙명여자대학교 생명시스템학부) ;
  • 김언미 (한국한의약진흥원 한약소재개발센터) ;
  • 정윤희 (한국한의약진흥원 한약소재개발센터) ;
  • 김민정 (숙명여자대학교 생명시스템학부) ;
  • 김성은 (숙명여자대학교 식품영양학과)
  • Received : 2023.10.12
  • Accepted : 2023.11.02
  • Published : 2023.12.31

Abstract

Purpose: The balance between synthesis and degradation of proteins plays a critical role in the maintenance of skeletal muscle mass. Mitochondrial dysfunction has been closely associated with skeletal muscle atrophy caused by aging, cancer, and chemotherapy. Polygalacin D is a saponin derivative isolated from Platycodon grandiflorum (Jacq.) A. DC. This study aimed to investigate the effects of polygalacin D on myoblast differentiation and muscle atrophy in association with mitochondrial function in in vitro and in zebrafish models in vivo. Methods: C2C12 myoblasts were cultured in differentiation media containing different concentrations of polygalacin D, followed by the immunostaining of the myotubes with myosin heavy chain (MHC). The mRNA expression of markers related to myogenesis, muscle atrophy, and mitochondrial function was determined by real-time quantitative reverse transcription polymerase chain reaction. Wild type AB* zebrafish (Danio rerio) embryos were treated with 5-fluorouracil, leucovorin, and irinotecan (FOLFIRI) with or without polygalacin D, and immunostained to detect slow and fast types of muscle fibers. The Tg(Xla.Eef1a1:mitoEGFP) zebrafish expressing mitochondria-targeted green fluorescent protein was used to monitor mitochondrial morphology. Results: The exposure of C2C12 myotubes to 0.1 ng/mL of polygalacin D increased the formation of MHC-positive multinucleated myotubes (≥ 8 nuclei) compared with the control. Polygalacin D significantly increased the expression of MHC isoforms (Myh1, Myh2, Myh4, and Myh7) involved in myoblast differentiation while it decreased the expression of atrophic markers including muscle RING-finger protein-1 (MuRF1), mothers against decapentaplegic homolog (Smad)2, and Smad3. In addition, polygalacin D promoted peroxisome proliferator-activated receptor-gamma coactivator (Pgc1α) expression and reduced the level of mitochondrial fission regulators such as dynamin-1-like protein (Drp1) and mitochondrial fission 1 (Fis1). In a zebrafish model of FOLFIRI-induced muscle atrophy, polygalacin D improved not only mitochondrial dysfunction but also slow and fast muscle fiber atrophy. Conclusion: These results demonstrated that polygalacin D promotes myogenesis and alleviates chemotherapy-induced muscle atrophy by improving mitochondrial function. Thus, polygalacin D could be useful as nutrition support to prevent and ameliorate muscle wasting and weakness.

본 연구는 근생성 및 근위축 완화효능을 가진 유효소재 발굴의 필요성에 의해 polygalacin D가 근원세포 분화 및 미토콘드리아에 미치는 영향과 항암제 유도 근위축에 대한 완화효과를 각각 세포 및 동물실험을 통해 확인하고자 하였다. 그 결과, polygalacin D는 다핵을 지닌 근관세포의 수와 분화 종결인자인 MHC isoforms의 발현량을 증가시켰고 근육 내 단백질 분해 인자인 MuRF1, Smad2/3의 발현량은 유의적으로 감소시켰다. 또한 미토콘드리아 생합성 조절인자인 Pgc1α의 발현은 증가시키고 미토콘드리아 분열인자인 Drp1과 Fis1의 발현은 감소시켰다. 한편 zebrafish 동물모델을 통해 항암제 유도 근위축에 대한 개선효과를 확인한 결과, polygalacin D는 항암제에 의해 유도된 근위축과 미토콘드리아 손상을 완화시켰다. 이상의 결과들은 polygalacin D가 미토콘드리아 기능 증진을 매개로 근원세포 분화 촉진 및 근육 단백질 분해 저하 효과를 지닐 뿐만 아니라, 미토콘드리아 손상을 개선하여 항암제로 유도된 근위축에 대한 완화 효과를 나타냄을 시사한다. 따라서 본 연구를 통해 polygalacin D가 근생성 및 근위축 예방과 치료를 위한 잠재적인 유효소재로서의 가능성을 제시하였다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) funded by the Korea government (MSIT) (NRF-2020R1C1C1007553, 2023R1A2C1005313 to Sung-Eun Kim, NRF-2022R1F1A1074668 to Min Jung Kim).

References

  1. Wang Y, Pessin JE. Mechanisms for fiber-type specificity of skeletal muscle atrophy. Curr Opin Clin Nutr Metab Care 2013; 16(3): 243-250. https://doi.org/10.1097/MCO.0b013e328360272d
  2. Schmidt M, Schuler SC, Huttner SS, von Eyss B, von Maltzahn J. Adult stem cells at work: regenerating skeletal muscle. Cell Mol Life Sci 2019; 76(13): 2559-2570. https://doi.org/10.1007/s00018-019-03093-6
  3. Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 2001; 294(5547): 1704-1708. https://doi.org/10.1126/science.1065874
  4. Files DC, D'Alessio FR, Johnston LF, Kesari P, Aggarwal NR, Garibaldi BT, et al. A critical role for muscle ring finger-1 in acute lung injury-associated skeletal muscle wasting. Am J Respir Crit Care Med 2012; 185(8): 825-834. https://doi.org/10.1164/rccm.201106-1150OC
  5. Sartori R, Milan G, Patron M, Mammucari C, Blaauw B, Abraham R, et al. Smad2 and 3 transcription factors control muscle mass in adulthood. Am J Physiol Cell Physiol 2009; 296(6): C1248-C1257. https://doi.org/10.1152/ajpcell.00104.2009
  6. Chen MM, Li Y, Deng SL, Zhao Y, Lian ZX, Yu K. Mitochondrial function and reactive oxygen/nitrogen species in skeletal muscle. Front Cell Dev Biol 2022; 10: 826981.
  7. Rahman FA, Quadrilatero J. Mitochondrial network remodeling: an important feature of myogenesis and skeletal muscle regeneration. Cell Mol Life Sci 2021; 78(10): 4653-4675. https://doi.org/10.1007/s00018-021-03807-9
  8. Chen TH, Koh KY, Lin KM, Chou CK. Mitochondrial dysfunction as an underlying cause of skeletal muscle disorders. Int J Mol Sci 2022; 23(21): 12926.
  9. Jang MK, Park C, Hong S, Li H, Rhee E, Doorenbos AZ. Skeletal muscle mass change during chemotherapy: a systematic review and meta-analysis. Anticancer Res 2020; 40(5): 2409-2418. https://doi.org/10.21873/anticanres.14210
  10. Barreto R, Waning DL, Gao H, Liu Y, Zimmers TA, Bonetto A. Chemotherapy-related cachexia is associated with mitochondrial depletion and the activation of ERK1/2 and p38 MAPKs. Oncotarget 2016; 7(28): 43442-43460. https://doi.org/10.18632/oncotarget.9779
  11. Furrer R, Handschin C. Muscle wasting diseases: novel targets and treatments. Annu Rev Pharmacol Toxicol 2019; 59(1): 315-339. https://doi.org/10.1146/annurev-pharmtox-010818-021041
  12. Lee H, Jeong JH, Hwang SH, Yeon SH, Ryu JH. A lignan from Alnus japonica activates myogenesis and alleviates dexamethasone-induced myotube atrophy. Planta Med 2023; 89(5): 484-492. https://doi.org/10.1055/a-1891-3366
  13. Zhang H, Chi M, Chen L, Sun X, Wan L, Yang Q, et al. Linalool prevents cisplatin induced muscle atrophy by regulating IGF-1/Akt/FoxO pathway. Front Pharmacol 2020; 11: 598166.
  14. Lee H, Heo JW, Kim AR, Kweon M, Nam S, Lim JS, et al. Z-ajoene from crushed garlic alleviates cancer-induced skeletal muscle atrophy. Nutrients 2019; 11(11): 2724.
  15. Zhang S, Chai X, Hou G, Zhao F, Meng Q. Platycodon grandiflorum (Jacq.) A. DC.: a review of phytochemistry, pharmacology, toxicology and traditional use. Phytomedicine 2022; 106: 154422.
  16. Seo YS, Kang OH, Kong R, Zhou T, Kim SA, Ryu S, et al. Polygalacin D induces apoptosis and cell cycle arrest via the PI3K/Akt pathway in non-small cell lung cancer. Oncol Rep 2018; 39(4): 1702-1710. https://doi.org/10.3892/or.2018.6230
  17. Nan F, Nan W, Yu Z, Wang H, Cui X, Jiang S, et al. Polygalacin D inhibits the growth of hepatocellular carcinoma cells through BNIP3L-mediated mitophagy and endogenous apoptosis pathways. Chin J Nat Med 2023; 21(5): 346-358. https://doi.org/10.1016/S1875-5364(23)60452-2
  18. Xiao S, Liu N, Yang X, Ji G, Li M. Polygalacin D suppresses esophageal squamous cell carcinoma growth and metastasis through regulating miR-142-5p/Nrf2 axis. Free Radic Biol Med 2021; 164: 58-75. https://doi.org/10.1016/j.freeradbiomed.2020.11.029
  19. Ishii H, Tori K, Tozyo T, Yoshimura Y. Saponins from roots of Platycodon grandiflorum. Part 2. Isolation and structure of new triterpene glycosides. J Chem Soc Perkin Trans 1 1984; 661-668.
  20. Yu J, Chang X, Peng H, Wang X, Wang J, Peng D, et al. A strategy based on isocratic and linear-gradient high-speed counter-current chromatography for the comprehensive separation of platycosides from Platycodi radix. Anal Methods 2021; 13(4): 477-483. https://doi.org/10.1039/D0AY02029J
  21. Le Grand F, Rudnicki MA. Skeletal muscle satellite cells and adult myogenesis. Curr Opin Cell Biol 2007; 19(6): 628-633. https://doi.org/10.1016/j.ceb.2007.09.012
  22. Mukund K, Subramaniam S. Skeletal muscle: a review of molecular structure and function, in health and disease. Wiley Interdiscip Rev Syst Biol Med 2020; 12(1): e1462.
  23. Sartori R, Romanello V, Sandri M. Mechanisms of muscle atrophy and hypertrophy: implications in health and disease. Nat Commun 2021; 12(1): 330.
  24. Yin L, Li N, Jia W, Wang N, Liang M, Yang X, et al. Skeletal muscle atrophy: from mechanisms to treatments. Pharmacol Res 2021; 172: 105807.
  25. Huo F, Liu Q, Liu H. Contribution of muscle satellite cells to sarcopenia. Front Physiol 2022; 13: 892749.
  26. Polen-De C, Giri S, Fadadu P, Weaver A, Mcgree ME, Moynagh M, et al. Muscle loss during cancer therapy is associated with poor outcomes in advanced ovarian cancer. J Natl Cancer Inst Monogr 2023; 2023(61): 43-48. https://doi.org/10.1093/jncimonographs/lgad007
  27. Blauwhoff-Buskermolen S, Versteeg KS, de van der Schueren MA, den Braver NR, Berkhof J, Langius JA, et al. Loss of muscle mass during chemotherapy is predictive for poor survival of patients with metastatic colorectal cancer. J Clin Oncol 2016; 34(12): 1339-1344. https://doi.org/10.1200/JCO.2015.63.6043
  28. Cespedes Feliciano EM, Lee VS, Prado CM, Meyerhardt JA, Alexeeff S, Kroenke CH, et al. Muscle mass at the time of diagnosis of nonmetastatic colon cancer and early discontinuation of chemotherapy, delays, and dose reductions on adjuvant FOLFOX: the C-SCANS study. Cancer 2017; 123(24): 4868-4877. https://doi.org/10.1002/cncr.30950
  29. Gouspillou G, Hepple RT. Editorial: mitochondria in skeletal muscle health, aging and diseases. Front Physiol 2016; 7: 446.
  30. Hood DA, Memme JM, Oliveira AN, Triolo M. Maintenance of skeletal muscle mitochondria in health, exercise, and aging. Annu Rev Physiol 2019; 81(1): 19-41. https://doi.org/10.1146/annurev-physiol-020518-114310
  31. Carter HN, Pauly M, Tryon LD, Hood DA. Effect of contractile activity on PGC-1α transcription in young and aged skeletal muscle. J Appl Physiol (1985) 2018; 124(6): 1605-1615. https://doi.org/10.1152/japplphysiol.01110.2017
  32. Bloemberg D, Quadrilatero J. Autophagy, apoptosis, and mitochondria: molecular integration and physiological relevance in skeletal muscle. Am J Physiol Cell Physiol 2019; 317(1): C111-C130. https://doi.org/10.1152/ajpcell.00261.2018
  33. Leduc-Gaudet JP, Hussain SN, Barreiro E, Gouspillou G. Mitochondrial dynamics and mitophagy in skeletal muscle health and aging. Int J Mol Sci 2021; 22(15): 8179.
  34. Jackson HE, Ingham PW. Control of muscle fibre-type diversity during embryonic development: the zebrafish paradigm. Mech Dev 2013; 130(9-10): 447-457. https://doi.org/10.1016/j.mod.2013.06.001
  35. Parsons MJ, Campos I, Hirst EM, Stemple DL. Removal of dystroglycan causes severe muscular dystrophy in zebrafish embryos. Development 2002; 129(14): 3505-3512. https://doi.org/10.1242/dev.129.14.3505