• Title/Summary/Keyword: Sizing Accuracy

Search Result 49, Processing Time 0.024 seconds

Global Acoustic Design Sensitivity Analysis using Direct BEM and Continuum DSA (직접 경계요소법과 연속계 설계민감도 해석법을 이용한 소음 설계 민감도 해석)

  • 왕세명;이제원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.81-87
    • /
    • 1998
  • In this paper, a global acoustic design sensitivity analysis (DSA) of field point pressure with respect to structural sizing design variables is developed. Firstly acoustic sensitivity is formulated and implemented numerically. And it is combined with continuum structural sensitivity to obtain the global acoustic, design sensitivity. For this procedure, GASA (global acoustic design sensitivity analyzer) has been developed. A half scale of automobile cavity model is considered in this paper. In order to confirm accuracy of the results of global acoustic DSA obtained by GASA, it is compared with the result of central finite difference method. In order to reduce computation time, Rayleigh approximated solution is evaluated and compared with the solution which used every nodal velocities. Also the acoustic optimization procedure is performed using design sensitivities. From these numerical studies, it can be shown that global acoustic DSA is a useful tool to improve acoustic problems.

  • PDF

An improvement of software sizing and cost estimation model with function point methods (기능 점수를 이용한 소프트웨어 규모 및 비용산정 방안에 관한 연구)

  • 김현수
    • Korean Management Science Review
    • /
    • v.14 no.1
    • /
    • pp.131-149
    • /
    • 1997
  • Software cost estimation is an important both for buyers and sellers(developers). We reviewed domestic and foreign researches and practices on software cost estimation with function point method comprehensively, In this paper, we derived four promising alternative function point models. They are an IFPUG(International Function Point User Group)-based model(Model I), a shorthand model for client/sever software systems(Model II), a data-oricnted model for relatively large software projects(Model III), and a general- purpose function point model for non business application softwares as well as business applications(Model IV). Empirical data shows that Model I, II, and IV are very useful function point models. In particular, model II and IV look very useful models since they are concise and accurate. These models can be incorporated in a new improved guideline for software cost estimation. General opinion survey shows that Model I, II and IV are preferable. There are no significant differences in preference between buyers and sellers. The survey also shows that users think function point method is better than step(line of code)-oriented cost estimation methods in many ways including objectivity and estimation accuracy.

  • PDF

Cold Forging Technology of large-sized and complicated parts (대형 난성형 부품의 냉간단조기술)

  • 이영선;김영광;이정환;정형식;김영수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.06a
    • /
    • pp.135-144
    • /
    • 1995
  • Cold Forging has advantage in high accuracy and short working time. However large-skzed and complicated parts are difficult to process with cold forging. Thus large-sized and complicated parts have been processed with two pieces, or combind forging that is hot forging in addition to cold sizing. Recently, large-sized and complicated parts can be manufactured with cold forging alone by advanced cold forging technology using the long-stroke press. In this paper, cold forging technology of large-sized and complicated parts are investigated, including tripod slide housing for constant velocity joint and drive shaft for starter.

A robust genetic algorithm for structural optimization

  • Chen, S.Y.;Rajan, S.D.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.4
    • /
    • pp.313-336
    • /
    • 2000
  • The focus of this paper is on the development and implementation of a methodology for automated design of discrete structural systems. The research is aimed at utilizing Genetic Algorithms (GA) as an automated design tool. Several key enhancements are made to the simple GA in order to increase the efficiency, reliability and accuracy of the methodology for code-based design of structures. The AISC-ASD design code is used to illustrate the design methodology. Small as well as large-scale problems are solved. Simultaneous sizing, shape and topology optimal designs of structural framed systems subjected to static and dynamic loads are considered. Comparisons with results from prior publications and solution to new problems show that the enhancements made to the GA do indeed make the design system more efficient and robust.

Multidisciplinary UAV Design Optimization Implementing Multi-Fidelity Analysis Techniques (다정밀도 해석기법을 이용한 무인항공기 다분야통합 최적설계)

  • Lee, Jae-Woo;Choi, Seok-Min;Van, Nguyen Nhu;Kim, Ji-Min;Byun, Yung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.8
    • /
    • pp.695-702
    • /
    • 2012
  • In this study, Multi-fidelity analysis is performed to improve the accuracy of analysis result during conceptual design stage. Multidisciplinary Design Optimization(MDO) method is also considered to satisfy the total system requirements. Low-fidelity analysis codes which are based on empirical equations are developed and validated for analyzing the Unmanned Aerial Vehicle(UAV) which have unconventional configurations. Analysis codes consist of initial sizing, aerodynamics, propulsion, mission, weight, performance, and stability modules. Design synthesis program which is composed of those modules is developed. To improve the accuracy of the design method for UAV, Vortex Lattice Method is used for the strategy of MFA. Multi-Disciplinary Feasible(MDF) method is used for MDO technique. To demonstrate the validity of presented method, the optimization results of both methods are compared. According to those results, the presented method is demonstrated to be applicable to improve the accuracy of the analyses during conceptual design stage.

A Study on Net-shape Technology of Automotive Lock-up Hub using Cold Back Pressure Forming (배압 성형기술을 이용한 Lock-up Hub의 정형제조 기술에 관한 연구)

  • Kwon, Y.C.;Lee, J.H.;Lee, Y.S.;Ishikawa, T.
    • Transactions of Materials Processing
    • /
    • v.17 no.2
    • /
    • pp.124-129
    • /
    • 2008
  • Net shape forging technologies give many effects into the costs and qualities for the finished products. So, the studies to reduce the additional machining amount are very important in forging industry. Specially, there are two main topics in cold forging industry, such as, tool life and precision forging. In this study, new forging technique was proposed to eliminate the machining process for fixing up the length and improve the lead accuracy of gear. The luck-up hub is manufactured through many processes, such as upsetting, piercing and direct extrusion. The gear is formed in direct extrusion process; however, lead accuracy of the gear is over allowance limit. Therefore, the additional sizing process must be added. In this study, process design for closed-die forging of a lock-up hub used for a component of automobile transmission was made using three-dimensional finite element simulations, and the strain distributions and velocity distributions are investigated through the post processor. The rigid-plastic finite-element method for back pressure forging has been used in order to reduce development time and die cost. Using the FEM simulation, we found the optimum value of back pressure. The prototypes of lock-up hub parts were forged into the net-shape. In the experiment, lead precision of tooth are measured by the CCMM(Contact Coordinate Measuring Machine). The dimensional accuracy of forged part was improved up to the 40% when back press was applied.

Computer Vision Based Measurement, Error Analysis and Calibration (컴퓨터 시각(視覺)에 의거한 측정기술(測定技術) 및 측정오차(測定誤差)의 분석(分析)과 보정(補正))

  • Hwang, H.;Lee, C.H.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.1
    • /
    • pp.65-78
    • /
    • 1992
  • When using a computer vision system for a measurement, the geometrically distorted input image usually restricts the site and size of the measuring window. A geometrically distorted image caused by the image sensing and processing hardware degrades the accuracy of the visual measurement and prohibits the arbitrary selection of the measuring scope. Therefore, an image calibration is inevitable to improve the measuring accuracy. A calibration process is usually done via four steps such as measurement, modeling, parameter estimation, and compensation. In this paper, the efficient error calibration technique of a geometrically distorted input image was developed using a neural network. After calibrating a unit pixel, the distorted image was compensated by training CMLAN(Cerebellar Model Linear Associator Network) without modeling the behavior of any system element. The input/output training pairs for the network was obtained by processing the image of the devised sampled pattern. The generalization property of the network successfully compensates the distortion errors of the untrained arbitrary pixel points on the image space. The error convergence of the trained network with respect to the network control parameters were also presented. The compensated image through the network was then post processed using a simple DDA(Digital Differential Analyzer) to avoid the pixel disconnectivity. The compensation effect was verified using known sized geometric primitives. A way to extract directly a real scaled geometric quantity of the object from the 8-directional chain coding was also devised and coded. Since the developed calibration algorithm does not require any knowledge of modeling system elements and estimating parameters, it can be applied simply to any image processing system. Furthermore, it efficiently enhances the measurement accuracy and allows the arbitrary sizing and locating of the measuring window. The applied and developed algorithms were coded as a menu driven way using MS-C language Ver. 6.0, PC VISION PLUS library functions, and VGA graphic functions.

  • PDF

Determination of In-focus Criteria In Image Processing Method for Particle Size Measurement (입경측정을 위한 영상처리기법에서 입자 초점면 존재 판단 기준의 설정)

  • Koh, Kwang Uoong;Kim, Joo Youn;Lee, Sang Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.3
    • /
    • pp.398-407
    • /
    • 1999
  • In the present image processing technique, the concept of the gradient indicator(GI) has been introduced to find out the depth-of-field in sizing large particles ranging from $30{\mu}m$ to $30{\mu}m$ where using of the concept of the normalized contrast value(VC) is not appropriate. The gradient indicator is defined as the ratio of the local value to the maximum possible value of the gray-level gradient in an image frame. The gradient indicator decreases with the increases of the particle size and the distance from the exact focal plane. A particle is considered to be in focus when the value of the gradient indicator at its image boundary stays above a critical value. This critical gradient indicator($GI_{critical}$) is defined as the maximum gradient indicator($GI_{max}$) subtracted by a constant ${\Delta}GI$ which is to account for the particle-size effect. In the present ca.so, the value of ${\Delta}GI$ was set to 0.28 to keep the standard deviation of the measured particles mostly within 0.1. It was also confirmed that, to find the depth-of-field for small particles(${\leq}30{\mu}m$) with the same measurement accuracy, tho concept of the critical normalized contrast($VC_{critical}$) is applicable with 85% of the maximum normalized contrast value($VC_{max}$). Finally, the depth-of-field was checked for the size range between $10{\mu}m$ and $300{\mu}m$ when the both in-focus criteria ($GI_{critical}$ and $VC_{critical}$) were adopted. The change of the depth-of-field with the particle size shows good linearity in both the VC-applicable and the GI-applicable ranges with a reasonable accuracy.

A Small Crack Length Evaluation Technique by Electronic Scanning (전자적 스캔에 의한 미소결함길이 평가기법)

  • Cho, Yong-Sang;Kim, Jae-Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.1
    • /
    • pp.15-20
    • /
    • 2009
  • The results of crack evaluation by conventional UT(Ultrasonic Test)is highly depend on the inspector's experience or knowledge of ultrasound. Phased array UT system and its application methods for small crack length evaluation will be a good alternative method which overcome present UT weakness. This study was aimed at checking the accuracy of crack length evaluation method by electronic scanning and discuss about characteristics of electronic scanning for crack length evaluation. Especially ultrasonic phased array with electronic scan technique was used in carrying out both sizing and detect ability of crack as its length changes. The response of ultrasonic phased array was analyzed to obtain the special method of determining crack length without moving the transducer and detect-ability of crack minimal length and depth from the material. A method of crack length determining by electronic scanning for the small crack is very real method which has it's accuracy and verify the effectiveness of method compared to a conventional crack length determination.

A Buffer Insertion Method for RLC Interconnects (RLC 연결선의 버퍼 삽입 방법)

  • 김보겸;김승용;김석윤
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.2
    • /
    • pp.67-75
    • /
    • 2004
  • This paper presents a buffer insertion method for RLC-class interconnect structured as a sin91e line or a tree. First, a closed form expression for the interconnect delay of a CMOS buffer driving single RLC line is represented. This expression has been derived by the n-th power law for deep submicrometer technology and occurs to be within 9 percentage of maximal relative error in accuracy compared with the results of HSPICE simulation for various RLC loads. This paper proposes a closed form expression based on this for the buffer insertion of single RLC lines and the buffer sizing algorithms for RLC tree interconnects to optimize path delays. The proposed buffer insertion algorithms are applied to insert buffers for several interconnect trees with a 0.25${\mu}{\textrm}{m}$ CMOS technology and the results are compared against those of HSPICE.