A Buffer Insertion Method for RLC Interconnects

RLC 연결선의 버퍼 삽입 방법

  • Published : 2004.02.01

Abstract

This paper presents a buffer insertion method for RLC-class interconnect structured as a sin91e line or a tree. First, a closed form expression for the interconnect delay of a CMOS buffer driving single RLC line is represented. This expression has been derived by the n-th power law for deep submicrometer technology and occurs to be within 9 percentage of maximal relative error in accuracy compared with the results of HSPICE simulation for various RLC loads. This paper proposes a closed form expression based on this for the buffer insertion of single RLC lines and the buffer sizing algorithms for RLC tree interconnects to optimize path delays. The proposed buffer insertion algorithms are applied to insert buffers for several interconnect trees with a 0.25${\mu}{\textrm}{m}$ CMOS technology and the results are compared against those of HSPICE.

본 논문은 인덕턴스 성분을 포함한 단일 도선 및 트리 구조 RLC 연결선의 버퍼 삽입 방법을 제시한다. 이를 위해 먼저 CMOS 버퍼가 구동하는 단일 RLC 도선에 대한 시간 지연의 대수식을 제시한다. 이 수식은 현재의 서브마이크로미터 공정을 위한 n-th power law 기반에서 유도되었으며, 다양한 RLC 부하를 가지고 실험해 본 결과, 실제 SPICE 시뮬레이션 결과에 비해 최대 9% 오차를 갖는 것으로 나타났다. 본 논문은 이 지연 시간 수식을 바탕으로 단일 도선 RLC 연결선을 여러 개로 나누는 버퍼 삽입에 관한 수식과 RLC 트리 연결선의 시간 지연을 최적화하기 위해 삽입될 버퍼의 사이즈를 결정하는 알고리듬을 제시한다. 제시된 버퍼 삽입 알고리듬은 0.25㎛ CMOS 공정의 트리 연결선에 적용하였으며, HSPICE 결과를 이용하여 정확도를 검증하였다.

Keywords

References

  1. J. M. Rabaey, Digital Integrated Circuits, A Design Perspective. Englewood Cliffs, NJ : Prentice-Hall, 1996
  2. S. Bothra, B. Rogers, M. Kellanm, and C. M. Osburn, 'Analysis of the effects of scaling on interconnect delay in ulsi circuits,' IEEE Trans. Electron Devices, vol. 40, pp. 591-597, Mar. 1993 https://doi.org/10.1109/16.199365
  3. T. Sakurai, 'Approximation of wiring delay in MOSFET LSI,' IEEE J. Solid-State Circuits, vol. SC-18, pp. 418-426, Aug. 1983
  4. A. Deutch et al., 'When are transmission-line effects important for on-chip interconnections?.' IEEE Trans. Microwave Theory Tech., vol. 45, pp. 1836-1846, Oct. 1997 https://doi.org/10.1109/22.641781
  5. Y. Massoud, S. Majors, T. Bustami, snd J. White, 'Layout techniques for minimizing on-chip interconnect self inductance,' in Proc. IEEE/ ACM Design Automat. Conf., June 1998, pp. 566-571 https://doi.org/10.1145/277044.277194
  6. Y. I. Ismail, E. G. Friedman, and J. L. Neves, 'Figures of merit to characterize the importance of on-chip inductance,' in Proc. IEEE/ACM Design Automat. Conf., June 1998, pp. 560-565 https://doi.org/10.1145/277044.277193
  7. L. T. Pillage, 'Coping with RC(L) interconnect design headaches,' in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design, Sept. 1995, pp. 246-253 https://doi.org/10.1109/ICCAD.1995.480019
  8. H. B. Bakoglu and J. D. Meindl, 'Optimal interconnection circuits for VLSI,' IEEE Trans. Electron Devices, vol. ED-32, pp. 903-909, May. 1985
  9. V. Adler and E. G. Friedman, 'Repeater design to reduce delay and power in resistive interconnect,' in Proc. IEEE Int. Symp. Circuits Systems, June1997, pp. 2148-2151 https://doi.org/10.1109/ISCAS.1997.621595
  10. C. J. Alpert and A. Devgan, 'Wire segmenting for improved buffer insertion,' in Proc. IEEE/ACM Design Automat. Conf., June 1997, pp. 649-654
  11. T. Sakurai, A. R. Newton, 'A Simple MOSFET Model for Circuit Analysis,' IEEE Transactions on Electron Devices, vol. 38, No. 4, pp. 887-894, Apr. 1991 https://doi.org/10.1109/16.75219
  12. Y. I. Ismail and E. G. Friedman, 'Optimum repeater insertion based on a CMOS Delay model for on-chip RLC interconnect,' in Proc. IEEE ASIC Conf., Sept. 1998, pp. 369-373 https://doi.org/10.1109/ASIC.1998.723040
  13. H. B. Bakoglu, Circuits, Interconnentions, and Packaging for VLSI Addison-Wesley Publishing Company, 1990
  14. Y. I. Ismail and E. G. Friedman, 'Effects of inductance on the propagation delay and repeater insertion in VLSI circuits,' in Proc. ACM/IEEE Design Automat. Conf., June 1999, pp. 721-724
  15. Y. I. Ismail snd E. G. Friedman, and J. L. Neves, 'Repeater Insertion in Tree Structured Inductive Interconnect,' IEEE Trans. Circuits and Systems II, vol. 48, No. 5, May 2001 https://doi.org/10.1109/ICCAD.1999.810687