• 제목/요약/키워드: Size-distribution

검색결과 7,749건 처리시간 0.034초

도시대기 입자상물질중 수용성 성분의 농도와 입경분로의 계절적 변동 (Seasonal variation of concentration and size distribution of Ionic species on aerosol in urban air)

  • 이승일;황경철;조기철;신영조;김희강
    • 한국환경보건학회지
    • /
    • 제22권3호
    • /
    • pp.64-71
    • /
    • 1996
  • Measurement of concentration and size distribution of TSP, ammonium, nitrate and sulfate were made from Mar., 1991. to June., 1992 in Seoul. The seasonal variation of concentration and size distribution of aerosols has been investiated. Aerosol were collected and size frationated by Andersen air sampler. Size classified samples were extrated with deionized water and analyzed for ammonium, nitrate and sulfate by ion chromatography. As the results of measurement, the average of concentration and MMAD(mass median aerodynamic diameter) were $118.58 \mu g/m^3$, and $2.77 \mu m$ for TSP, $1.92 \mu g/m^3$ and $1.35 \mu m$ for ammonium, $1.34 \mu g/m^3$ and $1.58 \mu m$ for nitrate, $8.52 \mu g/m^3$ and $2.15 \mu m$ for sulfate. The Seasonal variation of concentration and size distribution was observed for ammonium, nitrate and sulfate. The concentration peak of TSP was observed in coarse particles in spring and observed in fine particles in winter. The concentration's distribution of TSP, ammonium, nitrate and sulfate was observed bimodal type during all season.

  • PDF

유화.안정제의 종류에 따른 지방구의 입도 분포가 Mayonnaise의 유화안정성에 미치는 영향 (Effect of Size Distribution of Oil Particles with Emulsifiers and Stabilizers on the Emulsion Stability of Mayonnaise)

  • 이영엽
    • 한국식품영양과학회지
    • /
    • 제30권2호
    • /
    • pp.204-209
    • /
    • 2001
  • The effects of size distribution of oil particles on the emulsion stability of mayonnaise were studied as follows; The stability of mayonnaise has concerned closely with the viscosity and the size distribution of oil particles. Mostly, if the viscosity was increased, the stability was improved, and the distribution of oil particles was uniform and the less the variation, the more the stability. 75% of oil concentration of sample showed the highest viscosity, also the size of sample was the most uniform, compared to other concentration. Mayonnaise prepared with whole egg was unstable, and the size of oil particles was double larger than the case prepared with only the yolk. Addition of xanthan gum increased, the viscosity and the stability by centrifuge so that the more stable mayonnaise could be prepared. The result of using log-normal density function by Heldmann represented that the normal size of sample adding 0.6%-soluble starch and sample N in non-adding control was increased, while those of sample adding xanthan gum and soluble starch at the same time didn't change.

  • PDF

Effect of pH on the Size Distribution of Au Nanoparticles

  • Kang, Ae-Yeon;Park, Dae-Keun;Lee, Cho-Yeon;Yun, Wan-Soo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.390-390
    • /
    • 2011
  • The size distribution of gold nanoparticles (NPs) is an important factor in their application to various fields of nanotechnology such as nanodevice fabrication, nanobio measurements, medical diagnosis, and so on, since the properties of nanoparticles depend on the size. As the pH of the reaction mixture was increased, the size distribution of gold NPs synthesized via sodium citrate reduction method was getting narrower and it finally became quite mono-dispersive when the pH was higher than ca. 7. 0.1M NaOH solution was used in controlling the pH, while the ratio between sodium citrate and HAuCl4 was fixed to 3:1 whose initial pH was about 5. Scanning and tunneling electron microscopy and UV/Vis spectrometry were used to characterize the resulting Au NPs. The change of the size distribution of the NPs was discussed with the change of the reaction rate related to the change of hydroxyl ion concentration.

  • PDF

입경분포 분석을 활용한 합류식 하수관거 월류수(CSO) 오염물질 침강성 예측 (Application of Particle Size Analysis to Predict the Settleability of CSO Pollutants)

  • 윤현식;이두진;박영숙
    • 상하수도학회지
    • /
    • 제20권2호
    • /
    • pp.295-302
    • /
    • 2006
  • Over the past decades, a flocculation and/or sedimentation process have been adopted to remove pollutants from CSOs. It has been learned that major factors affecting settlement of pollutants are the particle size distribution, their settling velocities and their specific gravity. It is, therefore, a good idea to analyze the particle size distribution and settleability of CSOs pollutants in order to develop details in designing a process. Discussed in this study are pollutant characteristics of CSOs such as particle size distribution and settleability of pollutants. The power law function is applied and is found to be an effective and reliable index for expressing the particle size distribution of pollutants in CSOs. Based on the regression analysis it is observed that the derived constants of curves representing settling velocity profile are proportional to the initial concentration of particles and to the ${\beta}$-values of power law distributions.

로그분포모형을 이용한 토양수분특성 추정 (Estimation of Water Retention Characteristics Using Lognormal Distribution Model)

  • Sang Il Hwang
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제8권4호
    • /
    • pp.21-26
    • /
    • 2003
  • 황과 Powers(2003)는 입도분포와 공극크기분포에 로그분포함수를 적용하여, 입도분포로부터 토양수분특성을 직접 추정하는 간단한 모형을 개발하였다. 본 연구의 목적은 황과 Powers(2003)가 개발한 모형의 추정능력이 토성에 의해 영향을 받는가를 밝히는 것이다. 연구결과, 모형은 토성에 의해 영향을 받았고, 특히 토양내 세립질 분율이 커질수록 모형의 추정능력은 감소하였다. 또한 입도와 공극크기사이의 관계를 비선형으로 가정한 비선형모형이 선형모형보다 토성에 관계없이 그 추정능력이 크게 나타났다.

혼합효과가 DMA와 CPC를 이용한 입자분포 측정에 미치는 영향에 관한 연구 (Study on the Influence of Mixing Effect to the Measurement of Particle Size Distribution using DMA and CPC)

  • 이윤수;안강호;김상수
    • 대한기계학회논문집B
    • /
    • 제27권3호
    • /
    • pp.326-333
    • /
    • 2003
  • In the measurement using DMA and CPC in series, there is some time delay for particles classified in DMA to detect in CPC. During this time, the DMA time-response changes due to the velocity profile of sampling tube and the diffusion of particles in the volume that exists between the DMA exit and the detector of ultra-fine CPC. This is called mixing effect. In the accelerated measurement methods like the TSI -SMPS, the size distribution is obtained from the correlation between the time-varying electrical potential of the DMA and the corresponding particle concentrations sampled in DMA. If the DMA time -response changes during this delay time, this can cause the error of a size distribution measured by this accelerated technique. The kernel function considering this mixing effect using the residence time distribution is proposed by Russell et al. In this study, we obtained a size distribution using this kernel to compare to the result obtained by the commercial accelerated measurement system, TSI -SMPS for verification and considered the errors that result from the mixing effect with the geometric mean diameters of originally sampled particles, using virtually calculated responses obtained with this kernel as input data.

대기 모형에서의 벌크형 미세구름물리 모수화 방안 (Bulk-Type Cloud Microphysics Parameterization in Atmospheric Models)

  • 임교선
    • 대기
    • /
    • 제29권2호
    • /
    • pp.227-239
    • /
    • 2019
  • This paper reviews various bulk-type cloud microphysics parameterizations (BCMPs). BCMP, predicting the moments of size distribution of hydrometeors, parameterizes the grid-resolved cloud and precipitation processes in atmospheric models. The generalized gamma distribution is mainly applied to represent the hydrometeors size distribution in BCMPs. BCMP can be divided in three different methods such as single-moment, double-moment, and triple-moment approaches depending on the number of prognostic variables. Single-moment approach only predicts the hydrometeors mixing ratio. Double-moment approach predicts not only the hydrometeors mixing ratio but also the hydrometeors number concentration. Triple-moment approach predicts the dispersion parameter of hydrometeors size distribution through the prognostic reflectivity, together with the number concentrations and mixing ratios of hydrometeors. Triple-moment approach is the most time expensive method because it has the most number of prognostic variables. However, this approach can allow more flexibility in representing hydrometeors size distribution relative to single-moment and double-moment approaches. At the early stage of the development of BMCPs, warm rain processes were only included. Ice-phase categories such as cloud ice, snow, graupel, and hail were included in BCMPs with prescribed properties for densities and sedimentation velocities of ice-phase hydrometeors since 1980s. Recently, to avoid fixed properties for ice-phase hydrometeors and ad-hoc category conversion, the new approach was proposed in which rimed ice and deposition ice mixing ratios are predicted with total ice number concentration and volume.

반응조건에 따른 실록산으로 코팅된 마그네타이트 나노입자의 크기 및 분포 (Effect of Reaction Conditions on the Size and Size Distribution of Magnetite Nanoparticles Coated with Siloxane)

  • 윤관한;한창민;장용민
    • 폴리머
    • /
    • 제28권2호
    • /
    • pp.170-176
    • /
    • 2004
  • 반응조건에 따른 실록산으로 코팅된 마그네타이트 나노입자의 크기 및 분포를 동적광산란을 이용하여 조사하였다. FT-IR로부터 마그네타이트의 표면에 히드록시기가 존재함을 확인하였고 이 히드록시기는 코팅된 실록산의 실란올과 수소결합을 이루고 있음이 확인되었다. 제조된 나노입자의 크기는 반응온도가 증가함에 따라 입자크기는 증가하였고 단량체 함량과 교반 속도의 증가에 따라서는 감소하였다. 입자 크기 분포는 반응조건에 따라서 약간의 변화는 있지만 전체적으로 14∼41nm 크기의 범위를 나타냈다. 제조된 마그네타이트의 자성특성은 vibrating sample magnetometer를 이용하여 초상자성임이 확인되었고 실록산으로 코팅된 나노입자 역시 초상자성을 나타냄을 확인하였다. 반응조건에 따라서는 반응온도가 증가할수록 포화자화강도는 증가하였고 단량체 함량과 교반 속도가 증가함에 따라서 포화자화강도가 감소하는 것을 나타내었다.

Tree Size Distribution Modelling: Moving from Complexity to Finite Mixture

  • Ogana, Friday Nwabueze;Chukwu, Onyekachi;Ajayi, Samuel
    • Journal of Forest and Environmental Science
    • /
    • 제36권1호
    • /
    • pp.7-16
    • /
    • 2020
  • Tree size distribution modelling is an integral part of forest management. Most distribution yield systems rely on some flexible probability models. In this study, a simple finite mixture of two components two-parameter Weibull distribution was compared with complex four-parameter distributions in terms of their fitness to predict tree size distribution of teak (Tectona grandis Linn f) plantations. Also, a system of equation was developed using Seemingly Unrelated Regression wherein the size distributions of the stand were predicted. Generalized beta, Johnson's SB, Logit-Logistic and generalized Weibull distributions were the four-parameter distributions considered. The Kolmogorov-Smirnov test and negative log-likelihood value were used to assess the distributions. The results show that the simple finite mixture outperformed the four-parameter distributions especially in stands that are bimodal and heavily skewed. Twelve models were developed in the system of equation-one for predicting mean diameter, seven for predicting percentiles and four for predicting the parameters of the finite mixture distribution. Predictions from the system of equation are reasonable and compare well with observed distributions of the stand. This simplified mixture would allow for wider application in distribution modelling and can also be integrated as component model in stand density management diagram.

SMPS 시스템에서 용매(물)가 나노입도측정결과에 미치는 영향 (The Effect of Water Droplets on the Nano Particle Size Distribution using the SMPS System)

  • 황보선애;추민철
    • 한국분말재료학회지
    • /
    • 제20권2호
    • /
    • pp.129-133
    • /
    • 2013
  • In this paper we have studied the effect of water droplet size on nano-particle size distribution using SMPS(Scanning Mobility Particle Sizer)system. It can be seen that the unknown peak at >100 nm was caused by water droplets which did not dry completely when DI water was used as a solvent in the SMPS system. Therefore, it is important to dry water droplets generated from atomizer in the SMPS system when measuring the particle size distribution using less than 100 nm nano-particles in diameter. From this study, It can be concluded that the napion was a useful material as dryer ones and using EAG(Electro Aerosol Generator) as a particle generator was the most effective in reducing the effect of water droplets.