• Title/Summary/Keyword: Size-control

Search Result 7,183, Processing Time 0.042 seconds

Controlling size and magnetic properties of Fe3O4 clusters in solvothermal process

  • Madrid, Sergio I. Uribe;Pal, Umapada;Jesus, Felix Sanchez-De
    • Advances in nano research
    • /
    • v.2 no.4
    • /
    • pp.187-198
    • /
    • 2014
  • Magnetite nanoparticles (MNPs) of different sizes were synthesized by solvothermal process maintaining their stoichiometric composition and unique structural phase. Utilizing hydrated ferric (III) chloride as unique iron precursor, it was possible to synthesize sub-micrometric magnetite clusters of sizes in between 208 and 381 nm in controlled manner by controlling the concentration of sodium acetate in the reaction mixture. The sub-micrometer size nanoclusters consist of nanometric primary particles of 19 - 26.3 nm average size. The concentration of sodium acetate in reaction solution seen to control the final size of primary MNPs, and hence the size of sub-micrometric magnetite nanoclusters. All the samples revealed their superparamagnetic behavior with saturation magnetization ($M_s$) values in between 74.3 and 77.4 emu/g. $M_s$. The coercivity of the nanoclusters depends both on the size of the primary particles and impurity present in them. The mechanisms of formation and size control of the MNPs have been discussed.

To study of optimal subgroup size for estimating variance on autocorrelated small samples (소표본 자기상관 자료의 분산 추정을 위한 최적 부분군 크기에 대한 연구)

  • Lee, Jong-Seon;Lee, Jae-Jun;Bae, Soon-Hee
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2007.04a
    • /
    • pp.302-309
    • /
    • 2007
  • To conduct statistical process control needs the assumption that the process data are independent. However, most of chemical processes, like a semi-conduct processes do not satisfy the assumption because of autocorrelation. It causes abnormal out of control signal in the process control and misleading process capability. In this study, we introduce that Shore's method to solve the problem and to find the optimal subgroup size to estimate variance for AR(l) model. Especially, we focus on finding an actual subgroup size for small samples using simulation. It may be very useful for statistical process control to analyze process capability and to make a Shewhart chart properly.

  • PDF

Economic design of a pn control charts using loss-cost function (손실비용함수를 이용한 pn관리도의 경제적인 설계)

  • Lee, Yeong-Sik;Hwang, Ui-Cheol
    • Journal of Korean Society for Quality Management
    • /
    • v.18 no.1
    • /
    • pp.77-83
    • /
    • 1990
  • A model for the economic design of an pn control charts with an assignale cause is presented and the loss-cost function for control schemes using these charts is derived. By minimizing this function with respect to the three control variables, namely, the sample size, the sampling interval and acceptance number, the economically optimal control plan can be optained. The article shows what influence increasing or decreasing condition, according to changeability of the size of these factors, of expected cost can have on the economy when an attribute control chart is used.

  • PDF

An Implementation of Stabilizing Controller for 2-Axis Platform using Adaptive Fuzzy Control and DSP

  • Ryu, Gi-Seok;Kim, Jin-Kyu;Park, Jang-Ho;Kim, Dae-Young;Kim, Jong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.71.3-71
    • /
    • 2001
  • Passive Stabilization method and active stabilization method are mainly used to comprise a control system of platform stabilizer. Passive Stabilization method has demerits because of size and weight except that control structure is simple while active stabilization method using sensors can reduce size and weight, it requires high sensor technique and control algorithm. In this paper, a stabilizing controller using adaptive fuzzy control technique and floating-point processor(DSP) is suggested.

  • PDF

Microstructure Prediction Technology of Ni-Base Superalloy (단조용 니켈기지 초내열합금의 조직예측기술)

  • Yeom, J.T.;Kim, J.H.;Hong, J.K.;Park, N.K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.89-92
    • /
    • 2009
  • As a class of materials, Ni-base superalloys are among the most difficult metal alloys to forge together with refractory metals and cobalt-base superalloys. The mechanical properties of Ni-base superalloys depend very much on grain size and the strengthening phases, $\gamma$' ($Ni_3$(Al,Ti)-type) and $\gamma$".($Ni_3$Nb-type). Especially, the control of grain size remains as a sole means for the control of mechanical properties. The grain size and distribution changes of the wrought superalloys during hot working and heat treatment are mainly controlled by the recrystallization and grain growth behaviors. In this presentation, prediction technology of grain size through the computer-aided process design, and numerical modeling for predicting the microstructure evolution of Ni-base superalloy during hot working were introduced. Also, some case studies were dealt with actual forming processes of Ni-base superalloys.

  • PDF

Variable Step-Size MPPT Control based on Fuzzy Logic for a Small Wind Power System (소형풍력발전시스템을 위한 퍼지로직 기반의 가변 스텝 사이즈 MPPT 제어)

  • Choi, Dae-Keun;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.205-212
    • /
    • 2012
  • This paper proposes the fuzzy logic based variable step-size MPPT (Maximum Power Point Tracking) method for the stability at the steady state and the improvement of the transient response in the wind power system. If the change value of duty ratio is set on stability of the steady state, MPPT control traces to maximum power point slowly. And if the change value is set on improvement of the transient response, the system output oscillates at the maximum power point. By adjusting the step size with fuzzy logic, it can be improved the MPPT response speed and stability at steady state when MPPT control is performed to track the maximum power point. The effectiveness of the proposed method has been verified by simulations and experimental results.

Optimal Design of a EWMA Chart to Monitor the Normal Process Mean

  • Lee, Jae-Heon
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.3
    • /
    • pp.465-470
    • /
    • 2012
  • EWMA(exponentially weighted moving average) charts and CUSUM(cumulative sum) charts are very effective to detect small shifts in the process mean. These charts have some control-chart parameters that allow the charts and be tuned and be more sensitive to certain shifts. The EWMA chart requires users to specify the value of a smoothing parameter, which can also be designed for the size of the mean shift. However, the size of the mean shift that occurs in applications is usually unknown and EWMA charts can perform poorly when the actual size of the mean shift is significantly different from the assumed size. In this paper, we propose the design procedure to find the optimal smoothing parameter of the EWMA chart when the size of the mean shift is unknown.

Error Estimation and Adaptive Time Stepping Procedure for Structural Dynamics (구조동역학에서의 오차 추정과 시간간격 제어 알고리즘)

  • 장인식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.190-200
    • /
    • 1996
  • Step-by-step time integration methods are widely used for solving structural dynamics problem. One difficult yet critical choice an analyst must make is to decide an appropriate time step size. The choice of time step size has a significant effect on solution accuracy and computational expense. The objective of this research is to derive error estimate for newly developed time integration method and develop automatic time step size control algorithm for structural dynamics. A formula for computing error tolerance is derived based on desired period resolution. An automatic time step size control strategy is proposed based on a normalized local error estimate for the generalized-α method. Numerical examples demonstrate the developed strategy satisfies general design criteria for time step size control algorithm for dynamic problem.

  • PDF

Group Control Charts with Variable Stream and Sample Sizes (가변 스트림 및 표본크기 그룹관리도)

  • Lee, K.T.;Bai, D.S.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.3
    • /
    • pp.333-343
    • /
    • 1998
  • This paper proposes variable stream and sample size(VSSS) group control charts in which both the number of streams selected for sampling and sample size from each of the selected streams are allowed to vary based on the values of the preceding sample statistics. The proposed charts select a small portion of streams and take samples of size n = 1 if both the largest and smallest of sample means fall between the lower and upper threshold limits, and select a large portion of streams and take samples of size n > 1 otherwise. A Markov chain approach is used to derive the formulas for evaluating the performances of the proposed charts. Numerical comparisons are made between the VSSS and fixed stream and sample size(FSSS) group control charts.

  • PDF

A New LMS Algorithm for Improved Convergence Time in Active Noise Control (수렴속도 개선을 위한 새로운 LMS 알고리즘)

  • Park, Kyoung-Ho;Kim, Il-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.3
    • /
    • pp.276-279
    • /
    • 2001
  • Many industrial processes that are operated by rotating machines and large air-moving fans are excellent examples to which the single channel ANC systems can be applied. In these environments, the active noise control techniques are most popular nowadays. In this paper, a modified LMS algorithm(EAC, Error Amplitude Compared) is proposed. The algorithm is a kind of variable step-size LMS-type algorithm. Computer simulations show that the proposed EAC algorithm achieves a better convergence time than a conventional VS(Variable Step-Size) algorithm, Also, this algorithm has been implemented by using and experimental duct system.

  • PDF