Browse > Article
http://dx.doi.org/10.12989/anr.2014.2.4.187

Controlling size and magnetic properties of Fe3O4 clusters in solvothermal process  

Madrid, Sergio I. Uribe (Instituto de Fisica, Benemerita Universidad Autonoma de Puebla)
Pal, Umapada (Instituto de Fisica, Benemerita Universidad Autonoma de Puebla)
Jesus, Felix Sanchez-De (Area Academica de Ciencias de la Tierra y Materiales, Universidad Autonoma del Estado de Hidalgo)
Publication Information
Advances in nano research / v.2, no.4, 2014 , pp. 187-198 More about this Journal
Abstract
Magnetite nanoparticles (MNPs) of different sizes were synthesized by solvothermal process maintaining their stoichiometric composition and unique structural phase. Utilizing hydrated ferric (III) chloride as unique iron precursor, it was possible to synthesize sub-micrometric magnetite clusters of sizes in between 208 and 381 nm in controlled manner by controlling the concentration of sodium acetate in the reaction mixture. The sub-micrometer size nanoclusters consist of nanometric primary particles of 19 - 26.3 nm average size. The concentration of sodium acetate in reaction solution seen to control the final size of primary MNPs, and hence the size of sub-micrometric magnetite nanoclusters. All the samples revealed their superparamagnetic behavior with saturation magnetization ($M_s$) values in between 74.3 and 77.4 emu/g. $M_s$. The coercivity of the nanoclusters depends both on the size of the primary particles and impurity present in them. The mechanisms of formation and size control of the MNPs have been discussed.
Keywords
magnetite nanoclusters; solvothermal synthesis; size control; magnetic properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Berry, C.C. and Curtis, A.S.G. (2003), "Functionalisation of magnetic nanoparticles for applications in biomedicine", J. Phys. D: Appl. Phys., 36(13), R198-R206.   DOI   ScienceOn
2 Blin, B., Fievet, F., Beaupere, D. and Filglarz, M. (1989), "Oxydation duplicative de l'ethylene glycol dans un nouveau procede de preparation de poudres metalliques", Nouv. J. Chim., 13, 67-72.
3 Cai, W. and Wan, J. (2007), "Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols", J. Colloid Interf. Sci., 305(2), 366-370.   DOI   ScienceOn
4 Cha, J., Lee, J.S., Yoon, S.J., Kim, Y.K. and Lee, J.K. (2013), "Solid-state phase transformation mechanism for formation of magnetic multi-granule nanoclusters", RSC Adv., 3(11), 3631-3637.   DOI   ScienceOn
5 Chen, Y., Xia, H., Lu, L. and Xue, J. (2012) "Synthesis of porous hollow Fe3O4 beads and their application in lithium ion batteries", J. Mater. Chem., 22, 5006-5012.   DOI
6 Chin, S.F., Pang, S.C. and Tan, C.H. (2011), "Green synthesis of magnetite nanoparticles (via thermal decomposition method) with controllable size and shape", J. Mater. Environ. Sci., 2(3) 299-302.
7 Ching, C.J., Yiacoumi, S. and Tsouris, C. (2002), "Agglomeration of magnetic particles and breakup of magnetic chains in surfactant solutions", Coll. Surf. A: Physicochem. Eng. Aspect., 204(1-3), 63-72.   DOI
8 De Faria, D.L.A., Venancio Silva, S. and de Oliveira, M.T. (1997), "Raman microspectroscopy of some iron oxides and oxyhydroxides", J. Raman Spectrosc., 28(11), 873-878.   DOI
9 Dai, Q., Berman, D., Virwani, K., Frommer, J., Jubert, P.O., Lam, M., Topuria, T., Imaino, W. and Nelson, A. (2010), "Self-assembled ferrimagnet-polymer composites for magnetic recording media", Nano Lett., 10(8), 3216-3221.   DOI   ScienceOn
10 Degiorgi, L., Blatter-Morke, I. and Wachter, P. (1987), "Magnetite: phonon modes and the Verwey transition", Phys. Rev. B, 35(11), 5421-5424.   DOI
11 Deng, H., Li, X., Peng, Q., Wang, X., Chen, J. and Li, Y. (2005), "Monodisperse magnetic single-crystal ferrite microspheres", Angew. Chem. Int. Ed., 44(18), 2782-2785.   DOI   ScienceOn
12 Deng, Y., Qi, D., Deng, C., Zhang, X. and Zhao, D. (2008), "Superparamagnetic high-magnetization microspheres with a $Fe_3O_4$@Si$O_2$ core and perpendicularly aligned mesoporous Si$O_2$ shell for removal of microcystins", J. Am. Chem. Soc., 130(1), 28-29.   DOI
13 Devadasu, V.R., Bhardwaj, V. and Ravi Kumar, M.N.V. (2013), "Can controversial nanotechnology promise drug delivery?", Chem. Rev., 113(3), 1686-1735.   DOI
14 Guardia, P., Batlle-Brugal, B., Roca, A.G., Iglesias, O., Morales, M.P., Serna, C.J., Labarta, A. and Batlle, X. (2007), "Surfactant effects in monodisperse magnetite nanoparticles of controlled size", J. Magn. Magn. Mater., 316(2), e756-e759.   DOI   ScienceOn
15 Hu, P., Yu, L., Zuo, A., Guo, C. and Yuan, F. (2009), "Fabrication of monodisperse magnetite hollow spheres", J. Phys. Chem. C, 113(3), 900-906.   DOI   ScienceOn
16 Ha, N.T., Hai, N.H., Luong, N.H., Chau, N. and Chinh, H.D. (2008), "Effects of the conditions of the microemulsion preparation on the properties of Fe3O4 nanoparticles", VNU J. Sci. Natl. Sci. Technol., 24, 9-15.
17 Han, D.H., Wang, J.P. and Luo, H.L. (1994), "Crystallite size effect on saturation magnetization of fine ferrimagnetic particles", J. Magn. Magn. Mater., 136(1-2), 176-182.   DOI
18 Haw, C.Y., Mohamed, F., Chia, C.H., Radiman, S., Zakaria, S., Huang, N.M. and Lim, H.N. (2010), "Hydrothermal synthesis of magnetite nanoparticles as MRI contrast agents", Ceram. Int., 36(4), 1417-1422.   DOI
19 Huh, Y.M., Jun, Y.W., Song, H.T., Kim, S., Choi, J.S., Lee, J.H., Yoon, S., Kim, K.S., Shin, J.S., Suh, J.S. and Cheon, J. (2005), "In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals", J. Am. Chem. Soc., 127(35), 12387-12391.   DOI   ScienceOn
20 Iida, H., Takayanagi, K., Nakanishi, T. and Osaka, T. (2007), "Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis", J. Coll. Interf. Sci., 314(1), 274-280.   DOI
21 Jun, Y.W., Huh, Y.M., Choi, J.S., Lee, J.H., Song, H.T., Kim, S., Yoon, S., Kim, K.S., Shin, J.S., Suh, J.S. and Cheon, J. (2005), "Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging", J. Am. Chem. Soc., 127(16), 5732-5733.   DOI   ScienceOn
22 Jung, H., Kim, J.W., Choi, H., Lee, J.H. and Hur, H.G. (2008), "Synthesis of nanosized biogenic magnetite and comparison of its catalytic activity in ozonation", Appl. Catal. B: Environ., 83(3-4), 208-213.   DOI
23 Libert, S., Gorshkov, V., Goia, D., Matijevic, E. and Privman, V. (2003), "Model of controlled synthesis of uniform colloid particles: cadmium sulfide", Langimur, 19(26), 10679-10683.   DOI
24 Kumar, S., Rajesh Raja, M., Manivel Mangalaraj, D., Viswanathan, C. and Ponpandian, N. (2013) "Surfactant free solvothermal synthesis of monodispersed 3D hierarchical $Fe_3O_4$ microspheres", Mater. Lett. 110, 98-101.   DOI
25 Larumbe, S., Gomez Polo, C., Perez Landazabal, J.I. and Pastor, J.M. (2012), "Effect of a $SiO_2$ coating on the magnetic properties of $Fe_3O_4$ nanoparticles ", J. Phys.: Cond. Matter., 24(26), 266007-266013.   DOI
26 Legodi, M.A. and de Waal, D. (2007), "The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste", Dye. Pigmen., 74(1), 161-168.   DOI
27 Liu, Z.L., Wang, X., Yao, K.L., Du, G.H., Lu, Q.H., Ding, Z.H., Tao, J., Ning, Q., Luo, X.P., Tian, D.Y. and Xi, D. (2004), "Synthesis of magnetite nanoparticles in W/O microemulsion", J. Mater. Sci., 39(7), 2633-2636.   DOI
28 Marchegiani, G., Imperatori, P., Mari, A., Pilloni, L., Chiolerio, A., Allia, P., Tiberto, P. and Suber, L. (2012), "Sonochemical synthesis of versatile hydrophilic magnetite nanoparticles", Ultra. Sonochem., 19(4), 877-882.   DOI
29 Mascolo, M.C., Pei, Y. and Ring, T.A. (2013), "Room temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases", Mater., 6(12), 5549-5567.   DOI
30 Park, J., Lee, E., Hwang, N.M., Kang, M., Kim, S.C., Hwang, Y., Park, J.G., Noh, H.J., Kim, J.Y., Park, J.H. and Hyeon, T. (2005), "One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles", Angew. Chem. Int. Ed., 44(19), 2872-2877.   DOI   ScienceOn
31 Roullin, V.G., Deverre, J.R., Lemaire, L., Hindre, F., Venier-Julienne, M.C., Vienet, R. and Benoit, J.P. (2002), "Anti-cancer drug diffusion within living rat brain tissue: an experimental study using [3H](6)-5-fluorouracil-loaded PLGA microspheres", Eur. J. Pharm. Biopharm., 53(3), 293-299.   DOI   ScienceOn
32 Park, J., An, K., Hwang, Y., Park, J., Noh, H., Kim, J., Park, J., Hwang, N. and Hyeon, T. (2004), "Ultralarge-scale syntheses of monodisperse nanocrystals", Nat. Mater., 3, 891-895.   DOI   ScienceOn
33 Parkinson, G.S., Novotny, Z., Jacobson, P., Schmid, M. and Diebold, U. (2011), "Room temperature water splitting at the surface of magnetite", J. Am. Chem. Soc., 133(32), 12650-12655.   DOI
34 Ravikumar, C. and Bandyopadhyaya, R. (2011), "Mechanistic study on magnetite nanoparticle formation by thermal decomposition and coprecipitation routes", J. Phys. Chem. C, 115(5), 1380-1387.
35 Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotty, R.A., Rouquerol, J. and Siemieniewska, T. (1985), "Reporting physisorpyion data for gas/solid systems. With special reference to determination of surface area and porosity (recommendations 1984)", Pure Appl. Chem., 57(4), 603-619.
36 Song, Y., Wang, R., Rong, R., Ding, J., Liu, J., Li, R., Liu, Z., Li, H., Wang, X., Zhang, J. and Fang, J. (2011), "Synthesis of well-dispersed aqueous-phase magnetite nanoparticles and their metabolism as an MRI contrast agent for the reticuloendothelial system", Eur. J. Inorg. Chem., 2011(22), 3303-3313.   DOI
37 Sun, X., Zheng, C., Zhang, F., Yang, Y., Wu, G., Yu, A. and Guan, N. (2009), "Size-controlled synthesis of magnetite ($Fe_3O_4$) nanoparticles coated with glucose and gluconic acid from a single Fe(III) precursor by a sucrose bifunctional hydrothermal method", J. Phys. Chem. C, 113(36), 16002-16008.
38 Xuang, S., Wang, F., Lai, J.M.Y., Sham, K.W.Y., Wang, Y.X.J., Lee, S.F., Yu, J.C., Cheng, C.H.K. and Leung, K.C.F. (2011), "Synthesis of biocompatible, mesoporous $Fe_3O_4$ nano/microspheres with large surface area for magnetic resonance imaging and therapeutic application", ACS Appl. Mater. Interf., 3, 237-244.   DOI
39 Wu, W., He, Q., Chen, H., Tang, J. and Nie, L. (2007), "Sonochemical synthesis, structure and magnetic properties of air-stable Fe3O4/Au nanoparticles", Nanotech., 18(14), 145609-145617.   DOI
40 Xu, Z., Li, C., Kang, X., Yang, D., Yang, P., Hou, Z. and Lin, J. (2010), "Synthesis of a multifunctional nanocomposite with magnetic, mesoporous, and near-IR absorption properties", J. Phys. Chem. C, 114(39), 16343-16350.   DOI   ScienceOn
41 Yu, B.Y. and Kwak, S.Y. (2011), "Self-assembled mesoporous Co and Ni-ferrite spherical clusters consisting of spinelnanocrystals prepared using a template-free approach", Dalton Trans., 40(39), 9989-9998.   DOI
42 Zhao, S.Y., Lee, D.K., Kim, C.W., Cha, H.G., Kim, Y.H. and Kang, Y.S. (2006), "Synthesis of magnetic nanoparticles of $Fe_3O_4$ and $CoFe_2O_4$ and their surface modification by surfactant adsorption", Bull. Korean Chem. Soc., 27(2), 237-242.   DOI   ScienceOn
43 Zhu, M. and Diao, G. (2011), "Synthesis of porous Fe3O4 nanospheres and its application for the catalytic degradation of xylenol orange", J. Phys. Chem. C, 115(39), 18923-18934.   DOI   ScienceOn