Browse > Article
http://dx.doi.org/10.5351/KJAS.2012.25.3.465

Optimal Design of a EWMA Chart to Monitor the Normal Process Mean  

Lee, Jae-Heon (Department of Applied Statistics, Chung-Ang University)
Publication Information
The Korean Journal of Applied Statistics / v.25, no.3, 2012 , pp. 465-470 More about this Journal
Abstract
EWMA(exponentially weighted moving average) charts and CUSUM(cumulative sum) charts are very effective to detect small shifts in the process mean. These charts have some control-chart parameters that allow the charts and be tuned and be more sensitive to certain shifts. The EWMA chart requires users to specify the value of a smoothing parameter, which can also be designed for the size of the mean shift. However, the size of the mean shift that occurs in applications is usually unknown and EWMA charts can perform poorly when the actual size of the mean shift is significantly different from the assumed size. In this paper, we propose the design procedure to find the optimal smoothing parameter of the EWMA chart when the size of the mean shift is unknown.
Keywords
Design of a control chart; average run length; statistical process control; EWMA chart;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Reynolds, JR., M. R. and Stoumbos, Z. G. (2004b). Should observations be grouped for effective process monitoring?, Journal of Quality Technology, 36, 343-366.   DOI
2 Reynolds, JR., M. R. and Stoumbos, Z. G. (2006). Comparisons of some exponentially weighted moving average control charts for monitoring the process mean and variance, Technometrics, 48, 550-567.   DOI   ScienceOn
3 Roberts, S. W. (1959). Control chart tests based on geometric moving averages, Technometrics, 1, 239-250.   DOI
4 Ryu, J.-H., Wan, H. and Kim, S. (2010). Optimal design of a CUSUM chart for a mean shift of unknown size, Journal of Quality Technology, 42, 311-326.   DOI
5 Shu, L. and Jiang, W. (2006). A Markov chain model for the adaptive CUSUM control chart, Journal of Quality Technology, 38, 135-147.   DOI
6 Sparks, R. S. (2000). CUSUM charts for signaling varying location shifts, Journal of Quality Technology, 32, 157-171.   DOI
7 Zhao, Y., Tsung, F. and Wang, Z. (2005). Dual CUSUM control schemes for detecting a range of mean shifts, IIE Transactions, 37, 1047-1057.   DOI   ScienceOn
8 Capizzi, G. and Masarotto, G. (2003). An adaptive exponentially weighted moving average control chart, Technometrics, 45, 199-207.   DOI   ScienceOn
9 Crowder, S. V. (1987a). A simple method for studying run length distributions of exponentially weighted moving average charts, Technometrics, 29, 401-407.
10 Crowder, S. V. (1987b). Average run lengths of exponentially weighted moving average control charts, Journal of Quality Technology, 19, 161-164.   DOI
11 Jiang, W., Shu, L. and Apley, D. W. (2008). Adaptive CUSUM procedures with EWMA-based shift estimators, IIE Transactions, 40, 992-1003.   DOI   ScienceOn
12 Lucas, J. M. (1982). Combined Shewhart-CUSUM quality control schemes, Journal of Quality Technology, 14, 52-59.
13 Page, E. (1954). Continuous inspection schemes, Biometrika, 41, 100-115.   DOI
14 Reynolds, JR., M. R. and Stoumbos, Z. G. (2004a). Control charts and the efficient allocation of sampling resources, Technometrics, 46, 200-214.   DOI   ScienceOn
15 Reynolds, JR., M. R. and Lou, J. (2010). An evaluation of a GLR control chart for monitoring the process mean, Journal of Quality Technology, 42, 287-310.   DOI