• Title/Summary/Keyword: Size-Computation

Search Result 626, Processing Time 0.025 seconds

Integrated CFD on Atomization Process of Lateral Flow in Injector Nozzle

  • Ishimoto, Jun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.7-8
    • /
    • 2006
  • The governing equations for high-speed lateral atomizing injector nozzle flow based on the LES-VOF model in conjunction with the CSF model are presented, and then an integrated parallel computation are performed to clarify the detailed atomization process of a high speed nozzle flow and to acquire data which is difficult to confirm by experiment such as atomization length, liquid core shapes, droplets size distributions, spray angle and droplets velocity profiles. According to the present analysis, it is found that the atomization rate and the droplets-gas two-phase flow characteristics are controlled by the turbulence perturbation upstream of the injector nozzle, hydrodynamic instabilities at the gas-liquid interface, shear stresses between liquid core and periphery of the jet. Furthermore, stable and a high-resolution computation can be attained in the high density ratio (pl/ pg = 554) conditions conditions by using our numerical method.

  • PDF

An extension of testability analysis for sequential circuits (순차회로를 위한 검사성 분석법의 확장)

  • 김신택;민형복
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.4
    • /
    • pp.75-84
    • /
    • 1995
  • Fault simulators are used for accurate evaluation of fault coverages of digital circuits. But fault simulation becomes time and memory consuming job because computation time is proportional to wquare of size of circuits. Recently, several approximate algorithms for testability analysis have been published to cope with the problems. COP is very fast but cannot be used for sequential circuits, while STAFAN can ve used for sequential circuits but requires large amount of computation because it utilizes logic simulation results. In this paper EXTASEC(An Extension of Testability Analysis for Sequential Circuits) is proposed. It is an extension of COP in the sense that it is the same as COP for combinational circuits, but it can handle sequential circuits, Xicontrollability and backward line analysis are key concept for EXTASEC. Performance of EXTASEC is proven by comparing EXTASEC with a falut simulator, STAFAN, and COP for ISCAS circuits, and the result is demonstated.

  • PDF

A New Stereo Matching Using Compact Genetic Algorithm (소형 유전자 알고리즘을 이용한 새로운 스테레오 정합)

  • 한규필;배태면;권순규;하영호
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.474-478
    • /
    • 1999
  • Genetic algorithm is an efficient search method using principles of natural selection and population genetics. In conventional genetic algorithms, however, the size of gene pool should be increased to insure a convergency. Therefore, many memory spaces and much computation time were needed. Also, since child chromosomes were generated by chromosome crossover and gene mutation, the algorithms have a complex structure. Thus, in this paper, a compact stereo matching algorithm using a population-based incremental teaming based on probability vector is proposed to reduce these problems. The PBIL method is modified for matching environment. Since the Proposed algorithm uses a probability vector and eliminates gene pool, chromosome crossover, and gene mutation, the matching algorithm is simple and the computation load is considerably reduced. Even if the characteristics of images are changed, stable outputs are obtained without the modification of the matching algorithm.

  • PDF

Robust and Efficient 3D Model of an Electromagnetic Induction (EMI) Sensor

  • Antoun, Chafic Abu;Perriard, Yves
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.3
    • /
    • pp.325-330
    • /
    • 2014
  • Eddy current induction is used in a wide range of electronic devices, for example in detection sensors. Due to the advances in computer hardware and software, the need for 3D computation and system comprehension is a requirement to develop and optimize such devices nowadays. Pure theoretical models are mostly limited to special cases. On the other hand, the classical use of commercial Finite Element (FE) electromagnetic 3D models is not computationally efficient and lacks modeling flexibility or robustness. The proposed approach focuses on: (1) implementing theoretical formulations in 3D (FE) model of a detection device as well as (2) an automatic Volumetric Estimation Method (VEM) developed to selectively model the target finite elements. Due to these two approaches, this model is suitable for parametric studies and optimization of the number, location, shape, and size of PCB receivers in order to get the desired target discrimination information preserving high accuracy with tenfold reduction in computation time compared to commercial FE software.

Extracting the K-most Critical Paths in Multi-corner Multi-mode for Fast Static Timing Analysis

  • Oh, Deok-Keun;Jin, Myeoung-Woo;Kim, Ju-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.771-780
    • /
    • 2016
  • Detecting a set of longest paths is one of the crucial steps in static timing analysis and optimization. Recently, the process variation during manufacturing affects performance of the circuit design due to nanometer feature size. Measuring the performance of a circuit prior to its fabrication requires a considerable amount of computation time because it requires multi-corner and multi-mode analysis with process variations. An efficient algorithm of detecting the K-most critical paths in multi-corner multi-mode static timing analysis (MCMM STA) is proposed in this paper. The ISCAS'85 benchmark suite using a 32 nm technology is applied to verify the proposed method. The proposed K-most critical paths detection method reduces about 25% of computation time on average.

Operations Scheduling for Multi-item, Small-sized Production (다종소량생산(多種少量生産)의 일정계획(日程計劃))

  • Jo, Gyu-Gap;O, Su-Cheol;Yang, Tae-Yong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.11 no.2
    • /
    • pp.57-73
    • /
    • 1985
  • Group scheduling problem in a multi-stage manufacturing system is reviewed and two heuristic procedures for minimizing the makespan are developed by employing the methods of flow shop sequencing heuristics with a slight modification. The comparisons among the five heuristics, three previously reported heuristics and two heuristics suggested by this study, are made on different problem sizes. The computational results indicate that NEH-GS method gives better group schedules than the other heuristics tested, but its computation time increases rapidly as the problem size increases. On the other hand, CDS-GS method provides relatively good group schedules with less computation time compared with NEH-GS method.

  • PDF

Characterization of Microwave Polarimetric Backscattering from Grasslanlds Using the Radiative Transfer Theory

  • Oh, Yi-Sok;Lee, Jin-Won
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.180-185
    • /
    • 1998
  • Microwave polarimetric backscattering from a various types of grassland canopies has been analyzed by using the first-order radiative transfer theory in this paper. Leaves in the grassland are modeled by rectangular resistive sheets, which sizes (widths and lengths) and orientations (elevation and azimuth angles) are randomly distributed. Surface roughness and soil moisture of the ground plane under the grass canopy is considered in this computation. The backscattering coefficients of grasslands are computed for different radar parameters (angles, frequencies and Polarizations) as well as different canopy Parameters (size and orientation distributions of leaves, canopy depth, moisture contents of leaves and soil, rms height and correlation length of soil surface). A radar system for 15GHz has been fabricated and used for measurement of the scattering coefficient from a grass canopy. The computation result obtained by the scattering model for the grass canopy is compared with the measurements.

  • PDF

An Optimum Architecture for Implementing SEED Cipher Algorithm with Efficiency (효율적인 SEED 암호알고리즘 구현을 위한 최적화 회로구조)

  • Shin Kwang-Cheul;Lee Haeng-Woo
    • Journal of Internet Computing and Services
    • /
    • v.7 no.1
    • /
    • pp.49-57
    • /
    • 2006
  • This paper describes the architecture for reducing its size and increasing the computation rate in implementing the SEED algorithm of a 12B-bit block cipher, and the result of the circuit design. In order to increase the computation rate, it is used the architecture of the pipelined systolic array, This architecture is a simple thing without involving any buffer at the input and output part. By this circuit, it can be recorded 320 Mbps encryption rate at 10 MHz clock. We have designed the circuit with the VHDL coding, implemented with a FPGA of 50,000 gates.

  • PDF

Thermal Unit Commitment using Tabu Search (Tabu 탐색법을 이용한 화력 발전기의 기동정지계획)

  • Cheon, Hui-Ju;Kim, Hyeong-Su;Hwang, Gi-Hyeon;Mun, Gyeong-Jun;Park, Jun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.2
    • /
    • pp.70-77
    • /
    • 2000
  • This paper proposes a method of solving a unit commitment problem using tabu search (TS) which is heuristic algorithm. Ts is a local search method that starts from any initial solution and attempts to determine a better solution using memory structures. In this paper, to reduce the computation time for finding the optimal solution, changing tabu list size as intensification strategy and path relinking method as diversification strategy are proposed. To show the usefulness of the proposed method, we simulated for 10 units system and 110 units system. Numerical results show improvements in the generation costs and the computation time compared with priority list, genetic algorithm(GA), and hybrid GA.

  • PDF

Parallel Computations for Boundary Element Analysis of Magnetostatic Fields (정자계의 경계요소 해석을 위한 병렬계산)

  • Kim, Keun-Hwan;Choi, Kyung;Jung, Hyun-Kyo;Lee, Ki-Sik;Hahn, Song-Yop
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.5
    • /
    • pp.468-473
    • /
    • 1992
  • A boundary element analysis using parallel algorithm on transputers is described for three-dimensional magnetostatic field computations. The parallel algorithm are applied to assembling the system matrix and solving the matrix equation. Through the numerical results, it is shown that the computation time is ideally inverse proportional to the number of transputers, and the computational efficiency increases as the size of the system matrix becomes large. The easiness and simplicity in configuring the system hardware and making programs and computation times are compared in three kinds of topologies.

  • PDF