• 제목/요약/키워드: Size of Particles

검색결과 3,985건 처리시간 0.026초

Permeation Characteristics of Wastewater Containing Si Fine Particles through Ultrafiltration

  • Park, Ho-Sang;Park, Young-Tae;Lee, Seok-Ki
    • Korean Membrane Journal
    • /
    • 제5권1호
    • /
    • pp.31-35
    • /
    • 2003
  • The permeation characteristics of the wastewater containing Si fine particles were examined by ultrafiltration using the polyolefin tubular membrane module. Flux with time was due to the growth of Si cake deposited on the membrane surface and the pore plugging by fine particles. The rate of flux decline in the initial stage increased with the trans-membrane pressure. The pore blocking resistance was the dominant resistance at the initial period of filtration and the cake resistance began to dominate with the initial pore blocking resistance. The larger pores compared with the fine particles, the more the membrane pores could be blocked by the fine particles. Before and after treatment, the distribution of particle size was shifted toward to the left. Then, the average size of fine particles in the permeate was 20 nm.

배리어 유전체 방전을 이용한 전기 집진부에서의 나노 입자 집진 효율 (Collection Efficiency of Nano Particles by Electrostatic Precipitator using Dielectric Barrier Discharge)

  • 강석훈;변정훈;지준호;황정호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1435-1440
    • /
    • 2003
  • Although Dielectric Barrier Discharge (DBD) in air has been applied to a wider range of aftertreatment processes for HAPs(Hazardous Air Pollutants), due to its high electron density and energy, its potential use as precharging dust particles is not well known. In this work, we measured size distributions of bimodal aerosol particles and estimated collection efficiency of the particles by electrostatic precipitator(ESP) using DBD as particle charger. To examine the particle collection with DBD charger, nano size particles of NaCl($20{\sim}100$ nm) and DOS($50{\sim}800$ nm) were generated by tube furnace and atomizer, respectively. For experimental conditions of 60 Hz, 11 kV, and 60 lpm, the particle collection efficiency for the hybrid system comprising DBD charger and ESP was over 85 %, based on the number of particles captured.

  • PDF

Microstructure and Magnetic State of Fe3O4-SiO2 Colloidal Particles

  • Kharitonskii, P.V.;Gareev, K.G.;Ionin, S.A.;Ryzhov, V.A.;Bogachev, Yu.V.;Klimenkov, B.D.;Kononova, I.E.;Moshnikov, V.A.
    • Journal of Magnetics
    • /
    • 제20권3호
    • /
    • pp.221-228
    • /
    • 2015
  • Colloidal particles consisted of individual nanosized magnetite grains on the surface of the silica cores were obtained by two-stage sol-gel technique. Size distribution and microstructure of the particles were analyzed using atomic force microscopy, X-ray diffraction and Nitrogen thermal desorption. Magnetic properties of the particles were studied by the method of the longitudinal nonlinear response. It has been shown that nanoparticles of magnetite have a size corresponding to a superparamagnetic state but exhibit hysteresis properties. The phenomenon was explained using the magnetostatic interaction model based on the hypothesis of iron oxide particles cluster aggregation on the silica surface.

하드디스크 드라이브 동작 시 발생하는 입자 크기분포와 입자당 평균 대전량 측정 (Measurements of Particles Size Distribution and Average Particle Charge in Operating a Bard Disk Drive)

  • 이재호;박동호;이대영;윤기영;황정호
    • 대한기계학회논문집B
    • /
    • 제29권7호
    • /
    • pp.795-804
    • /
    • 2005
  • As the flying height of a slider in a hard disk drive decreases, the slider and disk are more likely to come in contact and generate contamination particles. Since particle contamination can cause serious problems including thermal asperity, it must be prevented to increase storage capacity. When particles are generated in a HDD, particles can be charged and have a few number of elementary charges. In this paper, the size distribution of particles and electrical current due to particle according to the disk rotational speed were measured. Also, the average number of elementary charges was calculated from experimental data. SEM images of particles were obtained by using a particle sampler designed in our laboratory.

나노 파우더 제조용 비드밀 제작에 관한 연구 (Study on Fabricating Bead Mill for Manufacturing Nano Powders)

  • 손재엽;남권선;김병희
    • 산업기술연구
    • /
    • 제25권B호
    • /
    • pp.127-133
    • /
    • 2005
  • Manufacturing methods of Nano particles can be distinguished by top-down technology as physical method and bottom-up technology as chemical synthetic method. Top-down technology is a kind of method for making microstructure as like carving after forming a macroscopic structure in advance and its typical methods are ball milling, gas condensation method and so on. Nano Particles synthesized by bottom-up method have got to do dispersing process for using them as actual nano particles because their viscosity are very strong and so easy to shape cohesive substances. Therefore, this study is about a particle separating device which separates a certain constant size of grains processed already in mill and mixer because we mostly use media agitating mill as a device of milling and dispersing and we necessarily use very slight balls as media for manufacturing nano particles in the machine. The centrifugal device has been designed for passing and separating below a certain type of grain size after final process of particles in the mill.

  • PDF

환원 석출법을 이용한 모양과 크기가 제어된 금 입자의 제조 (Fabrication of Size- and Shape- Controlled Gold Particles using Wet Chemical Process)

  • 홍소야;이창환;김주용
    • 한국염색가공학회지
    • /
    • 제22권2호
    • /
    • pp.123-131
    • /
    • 2010
  • Shape and size controlled synthesis of gold particles has been studied by using wet-chemical method. When ${AuCl_4}^-$ in aqueous $HAuCl_4$ precursor was reduced using $Na_2SO_3$ as a reducing agent, mixtures of spherical, triangular and hexagonal particles were prepared in a few minutes. It was found that the shape selective oxidative etching by ${AuCl_4}^-\;+\;Cl^-$ anions and crystal growth took place simultaneously. As the ${AuCl_4}^-$ and $Cl^-$ concentration increased, yields of large triangular and hexagonal plate type particles increased, while the spherical particles decreased in most cases. Possible etching and growth mechanisms are discussed.

Using oscillatory shear to probe the effects of bidispersity in inverse ferrofluids

  • Ekwebelam, C.C.;See, H.
    • Korea-Australia Rheology Journal
    • /
    • 제19권1호
    • /
    • pp.35-42
    • /
    • 2007
  • The effects of particle size distribution on the magnetorheological response of inverse ferrofluids was investigated using controlled mixtures of two monodisperse non-magnetisable powders of sizes $4.6\;{\mu}m\;and\;80{\mu}m$ at constant volume fraction of 30%, subjected to large amplitude oscillatory shear flow. In the linear viscoelastic regime (pre-yield region), it was found that the storage and loss moduli were dependent on the particle size as well as the proportion of small particles, with the highest storage modulus occurring for the monodisperse small particles. In the nonlinear regime (post yield region), Fourier analysis was used to compare the behaviour of the $1^{st}\;and\;3^{rd}$ harmonics ($I_{1}\;and\;I_{3}\;respectively$) as well as the fundamental phase angle as functions of the applied strain amplitude. The ratio of $I_{3}/I_{1}$ was found to become more pronounced with decreasing particle size as well as with increasing proportion of small particles in the bidisperse mixtures. Furthermore, the phase angle was able to clearly show the transition from solid-like to viscous behaviour. The results suggested that the nonlinear response of a bidisperse IFF is dependent on particle size as well as the proportion of small particles in the system.

LPG 확산화염내 매연입자의 전기적 특성 및 전기장에 의한 입자 크기 변화 (Electrical characteristics of soot particles in a LPG diffusion flame and particle size change by electric fields)

  • 박종인;지준호;황정호
    • 대한기계학회논문집B
    • /
    • 제21권10호
    • /
    • pp.1326-1338
    • /
    • 1997
  • Electrical characteristics of soot particles in a LPG diffusion flame were studied for the control of soot particle coagulation. When a DC voltage was applied between two electrodes installed parallel to gas flow, ionic wind effect caused soot deposition on the cathode, implying that most of the soot particles were positively charged. Soot deposit on the cathode linearly increased and was saturated with respect to the strength of the applied voltage. The possibility of applying an AC voltage to enhance the particle coagulation was then investigated and the efficiency of the size control was checked with transmission electron microscope photographs. For the amplitude of 2 kV AC field, primary (spherical) soot particle size decreased from 30 ~ 40 nm to around 20 nm when the frequency of the applied AC voltage was 60 Hz and higher. Collisions between the soot particles in such a selected AC condition could lead to the formation of much bigger agglomerates of roughly 1-5 .mu.m in size.

CWM 방울안의 미분탄 존재 (Pulverized Coal Particle Presence Inside CWM Droplet)

  • 김종호;김성준
    • 대한기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.1211-1221
    • /
    • 1990
  • 본 연구에서는 CWM을 이류체 미립화기(twin-fluid atomizer)로 미립화 시켜 미립화에 크게 영향을 미치는 인자들로 믿어지는 공기분사압력, 부하도(loading), 미 분탄의 크기 그리고 CWM 방울 채집위치의 변화가 CWM 방울크기 분포와 CWM 방울안 미 분탄 존재유무에 미치는 영향을 연구의 목적으로 하였다.

단일입자 질량분석기를 애용한 서브마이크론 입자의 특성화(I) - 입자의 크기와 질량분광신호의 비선형성 - (Characterization of submicron Particles Using a Single Particle Mass Spectrometer(I) - Non - Linear Correlation Between Particle Size and Mass Spectra Signals -)

  • ;이동근
    • 대한기계학회논문집B
    • /
    • 제29권4호
    • /
    • pp.453-459
    • /
    • 2005
  • In this paper, we are proposing a robust tool which is capable of measuring the size and elemental composition of submicron particles from twenty to several hundreds nanometers at the same time, i.e., named Single Particle Mass Spectrometer (SPMS). The home-made SPMS employs a laser ablation/multi-photon ionization method to tear a nanoparticle into the constituent elemental ions. One thing different from the conventional Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) is the power of the ionization laser. Much strong laser used in this work makes it possible to generate elemental ions rather than molecular ions from a nanoparticle. Also the use of high power laser may guarantee a complete ionization of a particle, which was confirmed by the existence of multiple charged ions. If a particle is evaporated/ionized completely and detected through electric field-free TOF tube without any loss, we can extract the original particle volume from the measured total ion numbers. Collecting a number of particles mass spectra, we get a database of size and elemental composition of nanoparticles, with which we may take a took into any kinds of chemical reaction occurring at nanoscale. Several issues related to size estimation by SPMS will be discussed.