• Title/Summary/Keyword: Size of Particles

Search Result 3,998, Processing Time 0.038 seconds

Evaluating the Applicability of Activated Carbon-added Fiberboard Filters Fabricated with Lignocellulosic Fiber for the Reduction Equipment of Particulate Matter (리그노셀룰로오스 섬유 기반 활성탄-첨가 섬유판 필터의 미세먼지 저감장치용 적용가능성 평가)

  • Yang, In;So, Jae min;Hwang, Jeong Woo;Choi, Joon weon;Lee, Young-kyu;Choi, Wonsil;Oh, Seung Won;Moon, Myoung cheol
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.548-556
    • /
    • 2021
  • This study was conducted to investigate the applicability of lignocellulosic fiber and coconut shell activated carbon (CSA) for the production of a particulate matter (PM)-reducing air-filter as raw materials to solve the environmental problems of non-woven fabrics. CSA had a good potential to use as a raw material of air-filter for reducing volatile organic compounds as well as noxious metals, and reduction capability of the CSA was 5 times higher than that of wood fiber. Natural adhesives formulated with proteinaceous wastes mostly were applied successfully to fabricate air-filters with the shape of fiberboard. The air-filter fabricated with the minimum target density of 200 kg/m3 and the maximum CSA-content of 40 wt% in fiberboard had a good manageable strength. However, the fiberboard filters was required to make vent-holes for improving an air-permeability of the filters. Size of the CSA particles was adjusted to greater than 2 mesh with the consideration of strength and formability of the fiberboard. Three-layers fiberboard that only wood fiber and the mixture of wood fiber and CSA were formed in the surface and middle layers, respectively, was determined to the optimal condition for the production of air-filters. In addition, traditional Korean paper handmade from mulberry trees (TKP) showed a good PM-reducing property as an air-filter. It is concluded that air-filtering set composed of fiberboard with vent-holes and TKP instead of conventional air-filters made with non-woven fabrics can be used as a filter for reducing the concentrations of PM, VOC and noxious metals existed in indoor and outdoor spaces.

Particulate Matter 10 from Asian Dust Storms Induces the Expression of Reactive Oxygen Species, NF-κ, TGF-β and Fibronectin in WI-26 VA4 Epithelial Cells (황사의 PM10이 WI-26 VA4 Cells에서 Reactive Oxygen Species, NFκB, TGF-β, Fibronectin의 발현에 미치는 영향)

  • Park, Kyeong Seon;Kim, Yu Jin;Yoon, Jin Young;Kyung, Sun Young;An, Chang Hyeok;Lee, Sang Pyo;Park, Jeong Woong;Jeong, Sung Hwan
    • Tuberculosis and Respiratory Diseases
    • /
    • v.65 no.6
    • /
    • pp.504-511
    • /
    • 2008
  • Background: Particulate matter may be toxic to human tissue. Ambient air particulate matter ${\leq}10{\mu}m$ in aerodynamic size ($PM_{10}$), which changes under different environmental conditions, is a complex mixture of organic and inorganic compounds. The Asian dust event caused by meteorological phenomena can also spread unique particulate matter in affected areas. We evaluated production of ROS, $TGF-{\beta}$, fibronectin, and $NF{\kappa}B$ by exposing normal epithelial cells to Asian dust particulate matter. Methods: Bronchial epithelial cells were exposed to 0, 50, ${\leq}100{\mu}g/ml$ of a suspension of $PM_{10}$ for 24 h. ROS were detected by measurement of DCF release from DCF-DA by FACScan. $TGF-{\beta}$, fibronectin, and $NF{\kappa}B$ were detected by western blotting. Results: $PM_{10}$ exposure increased the expression of $TGF-{\beta}$, fibronectin, and $NF{\kappa}B$. ROS production and $TGF-{\beta}$ levels were significantly higher with 50 or ${\leq}100{\mu}g/ml$ $PM_{10}$. Fibronectin and $NF{\kappa}B$ production were significantly higher after ${\leq}100{\mu}g/ml$ of $PM_{10}$. Conclusion: $PM_{10}$ from Asian dust particles might have fibrotic potential in bronchial epithelial cells via ROS induction after $PM_{10}$ exposure.

Skin Permeability of Petroselinum Crispum Extract Using Polymer Micelles and Epidermal Penetration Peptide (고분자 미셀과 경피투과 펩티드를 이용한 파슬리 추출물의 피부흡수 효과)

  • An, Gyu Min;Park, Su In;Kim, Min Gi;Heo, Soo Hyeon;Shin, Moon Sam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.3
    • /
    • pp.265-275
    • /
    • 2019
  • This study was conducted to investigate physiological activity and its skin permeability of Petroselinum crispum extract using polymer micelles and cell penetrating peptide. In the antioxidant test, the total concentrations of polyphenol compounds were determined to be $121.68{\pm}2.49mg/g$ (for ethanol extract and), $72.42{\pm}1.52mg/g$ (for hydrothermal extract.). The DPPH radical scavenging ability was $90.48{\pm}0.46%$ (for ethanol extract) and $83.92{\pm}0.13%$ (for hydrothermal extract) at 2000 mg/L. ABTS radical scavenging ability was $91.08{\pm}0.14%$ for ethanol extract ethanol extract, which is higher than that of hydrothermal extract at 800 mg/L ($69.63{\pm}0.55%$). In the SOD experiments, the P. crispum ethanol extract showed higher SOD activity than that of the P. crispum hydrothermal extract at all concentrations.. At a concentration of 16,000 mg/L, P. crispum ethanol extract showed the highest SOD activity of $128.45{\pm}0.70%$. The elastase inhibitory assay also showed concentration dependence and elastase inhibition of P. crispum ethanol extract was $99.99{\pm}1.54%$, which was the highest at 2,000 mg/L. To solve the problem of insolubility and to improve skin permeability of the extract, PCL-PEG polymer micelle containing P. crispum ethanol extracts and 1% cell permeable peptide, hexa-D-arginine (R6) were successfully prepared with a particle size of 40.10 nm. In the results of 24 hours of skin permeation experiment, total accumulated beta-carotene amounts showed $37.99{\mu}g/cm^2$ in Petroselinum crispum extracts and $68.38{\mu}g/cm^2$ (1.8 times) in P. crispum extract of the particles.

Stellite bearings for liquid Zn-/Al-Systems with advanced chemical and physical properties by Mechanical Alloying and Standard-PM-Route

  • Zoz, H.;Benz, H.U.;Huettebraeucker, K.;Furken, L.;Ren, H.;Reichardt, R.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2000.04a
    • /
    • pp.9-10
    • /
    • 2000
  • An important business-field of world-wide steel-industry is the coating of thin metal-sheets with zinc, zinc-aluminum and aluminum based materials. These products mostly go into automotive industry. in particular for the car-body. into building and construction industry as well as household appliances. Due to mass-production, the processing is done in large continuously operating plants where the mostly cold-rolled metal-strip as the substrate is handled in coils up to 40 tons unwind before and rolled up again after passing the processing plant which includes cleaning, annealing, hot-dip galvanizing / aluminizing and chemical treatment. In the liquid Zn, Zn-AI, AI-Zn and AI-Si bathes a combined action of corrosion and wear under high temperature and high stress onto the transfer components (rolls) accounts for major economic losses. Most critical here are the bearing systems of these rolls operating in the liquid system. Rolls in liquid system can not be avoided as they are needed to transfer the steel-strip into and out of the crucible. Since several years, ceramic roller bearings are tested here [1.2], however, in particular due to uncontrollable Slag-impurities within the hot bath [3], slide bearings are still expected to be of a higher potential [4]. The today's state of the art is the application of slide bearings based on Stellite\ulcorneragainst Stellite which is in general a 50-60 wt% Co-matrix with incorporated Cr- and W-carbides and other composites. Indeed Stellite is used as the bearing-material as of it's chemical properties (does not go into solution), the physical properties in particular with poor lubricating properties are not satisfying at all. To increase the Sliding behavior in the bearing system, about 0.15-0.2 wt% of lead has been added into the hot-bath in the past. Due to environmental regulations. this had to be reduced dramatically_ This together with the heavily increasing production rates expressed by increased velocity of the substrate-steel-band up to 200 m/min and increased tractate power up to 10 tons in modern plants. leads to life times of the bearings of a few up to several days only. To improve this situation. the Mechanical Alloying (MA) TeChnique [5.6.7.8] is used to prOduce advanced Stellite-based bearing materials. A lubricating phase is introduced into Stellite-powder-material by MA, the composite-powder-particles are coated by High Energy Milling (HEM) in order to produce bearing-bushes of approximately 12 kg by Sintering, Liquid Phase Sintering (LPS) and Hot Isostatic Pressing (HIP). The chemical and physical behavior of samples as well as the bearing systems in the hot galvanizing / aluminizing plant are discussed. DependenCies like lubricant material and composite, LPS-binder and composite, particle shape and PM-route with respect to achievable density. (temperature--) shock-reSistibility and corrosive-wear behavior will be described. The materials are characterized by particle size analysis (laser diffraction), scanning electron microscopy and X-ray diffraction. corrosive-wear behavior is determined using a special cylinder-in-bush apparatus (CIBA) as well as field-test in real production condition. Part I of this work describes the initial testing phase where different sample materials are produced, characterized, consolidated and tested in the CIBA under a common AI-Zn-system. The results are discussed and the material-system for the large components to be produced for the field test in real production condition is decided. Outlook: Part II of this work will describe the field test in a hot-dip-galvanizing/aluminizing plant of the mechanically alloyed bearing bushes under aluminum-rich liquid metal. Alter testing, the bushes will be characterized and obtained results with respect to wear. expected lifetime, surface roughness and infiltration will be discussed. Part III of this project will describe a second initial testing phase where the won results of part 1+11 will be transferred to the AI-Si system. Part IV of this project will describe the field test in a hot-dip-aluminizing plant of the mechanically alloyed bearing bushes under aluminum liquid metal. After testing. the bushes will be characterized and obtained results with respect to wear. expected lifetime, surface roughness and infiltration will be discussed.

  • PDF

Distributions of Endangered Fish Species and Their Relations to Chemical Water Quality-Ecological Stream Health in Geum-River Watershed (금강 대권역 대표 멸종위기 담수어류의 분포 특성 및 이화학적 수질-하천 생태건강도와의 관계분석)

  • Lee, Sang-Jae;An, Kwang Guk
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.6
    • /
    • pp.986-995
    • /
    • 2016
  • The objective of this study was to analyze the distribution of endangered fish species and elucidate their relations on chemical water quality, physical habitat conditions and ecological stream health. The dominant species in the watershed was Pseudopungtungia nigra (Pn), Gobiobotia macrocephala (Gm), Gobiobotia brevibarba (Gb), Liobagrus obesus (Lo), and Iksookimia choii (Ic) in the order. The species of Pn designated as "critical endangered species (I) (CER)", was most widely distributed species among the endangered species, so the designation of the species should be re-evaluated. The endangered species was most popular (4 species, 384 individuals) in the Cho-River region of eighteen lotic regions. According to the analysis of chemical tolerance limits in the habitats with endangered fish species, biological oxygen demand (BOD) and total phosphorus (TP) was analyzed as "very good" (Ia) and "good condition" in the chemical criteria of the Ministry of Environment, Korea. Also, chemical conditions, based on ammonia-N ($NH_{4+}$), total nitrogen (TN), phosphate-P ($PO_{4^-}P$) were much better in the habitat with endangered species (Hw) than the habitat without endangered species (Ho). In the meantime, the species of Ic showed wide ranges on the chemical tolerance, so physical habitat conditions, such as the size of substrate particles (sand) and hydrological regime, were considered as more important factors than the chemical water quality, if the water quality is not largely degraded. The endangered species were also more distributed in the high-order (4-6) streams than the low-order (1-3) streams. The evaluation of ecological stream health, based on multi-metric model of the Index of Biological Integrity (IBI), showed the large difference between the Hw (21.6, fair condition)and Ho (30.5, good condition), indicating that the habitat maintained well chemically and physically had higher distributions of endangered species. Overall, the designation of CER on the Pn should be re-evaluated due to wide-distributions, and the protections from water pollution and the habitat conservations on the endangered species are necessary in the watershed.

Experimental Study for the Development of the Mixing Ratio as a Compaction Pile (다짐말뚝 재료로서 쇄석과 저회의 적정 혼합비 도출을 위한 실험적 연구)

  • Leem, Hansoo;Kim, Sunkon;Lee, Jooho;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.9
    • /
    • pp.5-16
    • /
    • 2012
  • In the case of using the soil materials created by cutting in-situ ground directly without adjusting particle size, it is recommendable to seek the compaction property or material constant required for filling design or density control through indoor test, and many studies on this subject have been carried out during that time. The researches conducted during that time, however, were focused on the mixed materials with different diameters that exist in a natural condition. There has been no study conducted using coal fly ash that is by-product of the thermal power plant that is actively considered as the building materials. Therefore, this study was aimed at implementing compaction test and examining the basic engineering property in order to explore the influence of crushing the particles through compacting the admixture of crushed stone and coal fly ash produced from thermal power plant on its engineering property, and then the impact of the admixture volume of each material on compaction property and material property by conducting the One-Dimensional Compression Test. As result of compaction test, the optimum moisture ratio of coal fly ash was shown to be approx. 23%. As result of compaction test in accordance with the mixed ratio of coal fly ash and crushed stone under the same compaction energy and moisture ratio, dry unit weight tended to drop when the mixed ratio of coal fly ash exceeded 30%, while it reached approx. $1.81gf/cm^3$ when the mixed ratio was 30%. As result of One-Dimensional Compression Test in accordance with the mixed ratio of crushed stone and coal fly ash, the change in void ratio by particle crushing was at the highest level in the case of coal fly ash 100%, while the lowest level in the case of crushed stone 100%. In the case of mixed materials of crushed stone and coal fly ash, compression index was at the lowest level in case of coal fly ash 30%, and therefore this ratio of mixed material was judged to be the most stable from an engineering aspect.

Characterization of Concentrations of Fine Particulate Matter in the Atmosphere of Pohang Area (포항지역 대기 중 초미세먼지(PM$_{2.5}$)의 오염특성평가)

  • Baek, Sung-Ok;Heo, Yoon-Kyeung;Park, Young-Hwa
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.3
    • /
    • pp.302-313
    • /
    • 2008
  • The purposes of this study are to investigate the concentration levels of fine particles, so called PM$_{2.5}$, to identify the affecting sources, and to estimate quantitatively the source contributions of PM$_{2.5}$. Ambient air sampling was seasonally carried out at two sites in Pohang(a residential and an industrial area) during the period of March to December 2003. PM$_{2.5}$ samples were collected by high volume air samplers with a PM$_{10}$ Inlet and an impactor for particle size segregation, and then determined by gravimetric method. The chemical species associated with PM$_{2.5}$ were analyzed by inductively coupled plasma spectrophotometery(ICP) and ion chromatography(IC). The results showed that the most significant season for PM$_{2.5}$ mass concentrations appeared to be spring, followed by winter, fall, and summer. The annual mean concentrations of PM$_{2.5}$ were 36.6 $\mu$g/m$^3$ in the industrial and 30.6 $\mu$g/m$^3$ in the residential area, respectively. The major components associated with PM$_{2.5}$ were the secondary aerosols such as nitrates and sulfates, which were respectively 4.2 and 8.6 $\mu$g/m$^3$ in the industrial area and 3.7 and 6.9 $\mu$g/m$^3$ in the residential area. The concentrations of chemical component in relation to natural emission sources such as Al, Ca, Mg, K were generally higher at both sampling sites than other sources. However, the concentrations of Fe, Mn, Cr in the industrial area were higher than those in the residential area. Based on the principal component analysis and stepwise multiple linear regression analysis for both areas, it was found that soil/road dust and secondary aerosols are the most significant factors affecting the variations of PM$_{2.5}$ in the ambient air of Pohang. The source apportionments of PM$_{2.5}$ were conducted by chemical mass balance(CMB) modeling. The contributions of PM$_{2.5}$ emission sources were estimated using the CMB8.0 receptor model, resulting that soil/road dust was the major contributor to PM$_{2.5}$, followed by secondary aerosols, vehicle emissions, marine aerosols, metallurgy industry. Finally, the application and its limitations of chemical mass balance modeling for PM$_{2.5}$ was discussed.

The Effect of Vanadium(V) Oxide Content of V2O5-WO3/TiO2 Catalyst on the Nitrogen Oxides Reduction and N2O Formation (질소산화물 환원과 N2O 생성에 있어서 V2O5-WO3/TiO2 촉매의 V2O5 함량 영향)

  • Kim, Jin-Hyung;Choi, Joo-Hong
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.313-318
    • /
    • 2013
  • In order to investigate the effect of $V_2O_5$ loading of $V_2O_5-WO_3/TiO_2$ catalyst on the NO reduction and the formation of $N_2O$, the experimental study was carried out in a differential reactor using the powder catalyst. The NO reduction and the ammonia oxidation were, respectively, investigated over the catalysts compose of $V_2O_5$ content (1~8 wt%) based on the fixed composition of $WO_3$ (9 wt%) on $TiO_2$ powder. $V_2O_5-WO_3/TiO_2$ catalysts had the NO reduction activity even under the temperature of $200^{\circ}C$. However, the lowest temperature for NO reduction activity more than 99.9% to treat NO concentration of 700 ppm appeared at 340 with very limited temperature window in the case of 1 wt% $V_2O_5$ catalyst. And the temperature shifted to lower one as well as the temperature window was widen as the $V_2O_5$ content of the catalyst increased, and finally reached at the activation temperature ranged $220{\sim}340^{\circ}C$ in the case of 6 wt% $V_2O_5$ catalyst. The catalyst of 8 wt% $V_2O_5$ content presented lower activity than that of 8 wt% $V_2O_5$ content over the full temperature range. NO reduction activity decreased as the $V_2O_5$ content of the catalyst increased above $340^{\circ}C$. The active site for NO reduction over $V_2O_5-WO_3/TiO_2$ catalysts was mainly related with $V_2O_5$ particles sustained as the bare surface with relevant size which should be not so large to stimulate $N_2O$ formation at high temperature over $320^{\circ}C$ according to the ammonia oxidation. Currently, $V_2O_5-WO_3/TiO_2$ catalysts were operated in the temperature ranged $350{\sim}450^{\circ}C$ to treat NOx in the effluent gas of industrial plants. However, in order to save the energy and to reduce the secondary pollutant $N_2O$ in the high temperature process, the using of $V_2O_5-WO_3/TiO_2$ catalyst of content $V_2O_5$ was recommended as the low temperature catalyst which was suitable for low temperature operation ranged $250{\sim}320^{\circ}C$.

Stabilizing Soil Moisture and Indoor Air Quality Purification in a Wall-typed Botanical Biofiltration System Controlled by Humidifying Cycle (가습 주기에 따른 벽면형 식물바이오필터의 토양 수분 안정화 및 실내공기질 정화)

  • Lee, Chang Hee;Choi, Bom;Chun, Man Young
    • Horticultural Science & Technology
    • /
    • v.33 no.4
    • /
    • pp.605-617
    • /
    • 2015
  • The ultimate goal of this research is to develop a botanical biofiltration system that combines a green interior, biofiltering, and automatic irrigation to purify indoor air pollutants according to indoor space and the size of biofilter. This study was performed to compare the stability of air flow characteristics and removal efficiency (RE) of fine dust within a wall-typed (vertical) botanical biofilter depending on humidifying cycle and to investigate RE of volatile organic compounds (VOCs) by the biofilter. The biofilter used in this experiment was designed as an integral form of water metering pump, water tank, blower, humidifier, and multi-level planting space in order to be suitable for indoor space utilization. As a result, relative humidity, air temperature, and soil moisture content (SMC) within the biofilter showed stable values regardless of three different humidifying cycles operated by the metering pump. In particular, SMCs were consistently maintained in the range of 27.1-29.7% during all humidifying cycles; moreover, a humidifying cycle of operating for 15 min and pausing for 45 min showed the best horizontal linear regression (y = 0.0008x + 29.09) on SMC ($29.0{\pm}0.2%$) during 120 hour. REs for number of fine dust (PM10) and ultra-fine dust (PM2.5) particles passed through the biofilter were in the range of 82.7-89.7% and 65.4-73.0%, respectively. RE for weight of PM10 passed through the biofilter was in the range of 58.1-78.9%, depending on humidifying cycle. REs of xylene, ethyl benzene, total VOCs (TVOCs), and toluene passed through the biofilter were in the range of 71.3-75.5%, while REs of benzene and formaldehyde (HCHO) passed through the biofilter were 39.7% and 44.9%, respectively. Hence, it was confirmed that the wall-typed botanical biofilter suitable for indoor plants was very effective for indoor air purification.

Distribution of Total Mercury in Korean Coastal Sediments (한반도 연안역 표층퇴적물 내 총 수은 분포 특성)

  • JOE, DONGJIN;CHOI, MANSIK;KIM, CHANKOOK
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.23 no.2
    • /
    • pp.76-90
    • /
    • 2018
  • To determine the distribution of mercury (Hg) in the coastal surface sediments around the Korean peninsula, the baseline concentration of Hg was estimated, the extent of contamination was assessed, and the factors controlling the distribution were discussed. The concentrations of Hg in surface sediments were significantly high in Jinhae-Masan Bay in the South Sea, Ulsan-Onsan Bay and Yeongil Bay in the East Sea, but Hg in other sediments showed a similar distribution to Cs and relatively very low concentration between 0.21 and $39.5{\mu}g/kg$ ($13.6{\pm}7.80{\mu}g/kg$). Compared to the sediment quality guidelines in Korea, 8 % of the surface sediments (n=282) analyzed in this study exceeded the values of the threshold effects level (TEL), and six sediments collected around Onsan Port were higher than the value of the probable effects level (PEL). The contamination levels of Hg were assessed by the enrichment factors using the baseline concentration (2.06Cs+1.75) based on the residual analysis from the linear regression line for Cs, and further, factors controlling the distribution of Hg were discussed by the comparison with geochemical substances depending upon the Hg enrichment level. Hg concentrations were correlated well with Cs concentration in the range of less than 1.69 of EF implying grain size control, while in the range of 1.69 and 4.03 Hg concentrations were correlated well with Fe oxyhyroxide and organic carbon contents, which indicates Hg was enriched by superior sorption capability. On the meanwhile, samples with higher EFs (4.03 to 74.9) showed fairly positive correlations with other metals (Cu, Zn, Pb) rather than geochemical substances. For samples in Youngil Bay and Ulsan-Onsan Bay (n=30), Hg concentrations were correlated only with other metals rather than geochemical substances implying simultaneous supply of metal particles from metal refineries. But samples at Gosung, Sokcho and Uljin coast were correlated well with organic carbon even though they had high EFs. In addition, samples in Jinhae-Masan Bay with high contents of S were enriched by relatively high sulfide formation.