• Title/Summary/Keyword: Size of Particles

Search Result 3,985, Processing Time 0.036 seconds

Cause of Groundwater Yield Reduction in a Collector Well Considering Sediment's Composition and Hydrogeochemical Characteristics (지층 및 이화학 특성을 고려한 방사형 집수정의 취수량 감소 원인 분석)

  • Kim, Gyoo-Bum;Lee, Chi-Hyung;Oh, Dong-Hwan
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.439-449
    • /
    • 2017
  • The cause of yield reduction in a collector well, which is located in Anseong-cheon watershed in Kyunggi province, is studied by using aquifer sediments' composition and hydraulic conductivity near four horizontal wells, no. 1, no. 4, no. 6, and no. 7 wells. During test-pumping periods, groundwater yield is reduced with a trend of $12.4m^3/d/d$ at no. 1, $2.3m^3/d/d$ at no. 4, $24.4m^3/d/d$ at no. 6, and $187.3m^3/d/d$ at no. 7 and no. 7 well shows the biggest reduction. The sediments along no. 7 horizontal well have low hydraulic conductivity and high coefficient of uniformity ($C_u$), and a deviation of $C_u$ along the well is also large. This characteristics can bring the fine particles' movement and make the openings filled. Additionally, high iron ($Fe^{2+}$) content results in a precipitation of iron hydroxides during pumping or injection and they can produce a clogging in sediments. In the future study, the analysis of physical and hydrochemical changes through a long-term pumping procedure will give a more exact interpretation for the cause of yield reduction.

A Study on the Preparation and Application of Au/TiO2 Nanofiber from AAO Template (AAO Template를 이용한 Au/TiO2 나노섬유 제조 및 응용에 관한 연구)

  • Eom, Seon-Mi;Park, Sang-Sun;Kim, Young-Deok;Kim, Yong-Rok;Shul, Yong-Gun
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.1
    • /
    • pp.47-53
    • /
    • 2009
  • In this study, highly ordered AAO (Anodic Aluminum Oxide) with nanopores was prepared by commercial grade Al substrate containing 3.5 wt.% impurities through two step anodizing method. Nanopores of prepared AAO arrays were used as templates for preparing nanofiber. $TiO_2$ was deposited by using DP (deposition-precipitation) method into AAO pores to grow nanofiber. Au particles were loaded on this $TiO_2$ nanofiber which was grown vertically. Prepared 2 wt.% $Au/TiO_2$ nanofiber was characterized by XRD, SEM and Raman. The crystal structure was analyzed by the XRD. SEM was used to observe pore size and pore wall thickness. Photocatalytic activity of co-oxidation was compared with $TiO_2$ and $Au/TiO_2$ nanofiber on AAO arrays.

Partial Oxidation of Methane to Syngas over M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm) Catalysts (M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm) 촉매상에서 합성가스 제조를 위한 메탄의 부분산화반응)

  • Seo, Ho Joon;Kim, Yong Sung
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.720-725
    • /
    • 2017
  • M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm) catalysts were prepared for the partial oxidation of methane (POM) to syngas. The catalysts were characterized by BET, TEM, and XPS. The BET-specific surface area and average pore size for M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm) were 538.8, 504.3, and $447.3m^2/g$ and 6.4, 6.8, and 7.1 nm, respectively. TEM results showed that the mesoporous hexagonol structure was formed for SBA-15, while the homogeneous dispersion of Ni and Ce particles on the surface was formed for Ce(10)-Ni(5)/SBA-15 caused by the confinment effect of SBA-15. XPS data confirmed that $Ce^{4+}$ and $Ce^{3+}$ on the surface catalyst have two oxidation states due to the lattice oxygen species ($O^{2-}$, $O^-$). The yields of POM to syngas over Ce(10)-Ni(5)/SBA-15 were 52.9% $H_2$ and 21.7% CO at 1 atm, 973 K, $CH_4/O_2=2$, $GHSV=1.08{\times}10^5mL/g_{cat.}{\cdot}h$, and these values were kept constant even after 75 h on streams. The same tendency of syngas yields was observed for M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm). These results confirm that the redox reaction of promoters including Ce, Nd, and Sm enhanced the stability and yield of catalysts.

Study on Corrosion Characteristic of New Nb-containing Zr based Alloys for Fuel cladding (Nb 첨가 핵연료피복관용 Zr 신합금의 부식특성 연구)

  • Choe, Byeong-Gwon;Ha, Seung-Won;Jeong, Yong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.405-412
    • /
    • 2001
  • Corrosion tests were carried out in $360^{\circ}C$ water and $360^{\circ}C$ 70ppm LiOH solution to investigate the corrosion behavior of new zirconium alloys (Zr-0.4Nb-0.8Sn-xFeCrMn, Zr-0.2Nb-1.1Sn-xFeCrMn, Zr-1.0Nb-xFeCu). Microstructures of tested alloys were analyzed by optical microscope and TEM. The cross-sectional surface and crystalline structure of the oxide layer were analyzed by SEM and XRD. From the results of corrosion test, all the alloys showed higher corrosion rates in $360^{\circ}C$ 70ppm LiOH aqueous solution thats in $360^{\circ}C$ water. Especially, high Nb-containing alloy exhibited the acceleration of corrosion rate in LiOH solution. The low Nb- and Sn-added alloys showed better corrosion resistance than the Sn- free high Nb alloy. from the effect of final annealing on the corrosion, it was observed that the partially recrystallized alloys showed better corrosion resistance than fully recrystallized alloys. This would be related to the size and distribution of the second phase particles.

  • PDF

Comparisons of Sludge Pre-Treatment Systems : Hydrodynamic vs Ultrasonic Cavitation (수리동력학적 및 초음파 캐비테이션 슬러지 전처리 장치의 비교 연구)

  • Maeng, Jang-Woo;Bae, Jae-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.2
    • /
    • pp.90-95
    • /
    • 2009
  • Sludge pre-treatment utilizing cavitation is one of the commercialized methods at present. Cavitation can be generated by two different methods, sonotrode and hydrodynamic principle, and there has been no direct comparison between the two methods. In this study, solubilization efficiency, changes in sludge size distribution, and the methane production potential after pre-treatment by the two methods were compared. The maximum solubilization efficiency per unit energy input with the two methods was similar, and was 302 mg ${\Delta}SCOD/g$ TS at the energy input of 0.18 kWh/L. Break-up of sludge flocs were dominant during the early period of pre-treatment, while cell disintegration continued through the pre-treatment with the increase in the number of particles with less than 1 ${\mu}m$. BMP test results indicated that the methane potential increased up to 24.3% without differences between the two pre-treatments, and the increase in methane potential did not proportional to energy input. Although the energy efficiency of the two methods was quite similar, hydrodynamic methods might be a better choice for field application considering the operation and maintenance cost, and its potential improvement in energy efficiency.

Drug Delivery Study on Chitosan Nanoparticles Using Iron Oxide (II, III) and Valine (Iron Oxide(II, III)와 Valine을 이용한 키토산 나노입자의 약물전달 연구)

  • Jang, So-Hyeon;Kang, Ik-Joong
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.514-520
    • /
    • 2021
  • A drug delivery system (DDS) based on nanoparticles has been used as a mediator to improve the efficacy of a drug by controlling the amount of drug released and delivering it to a target place. Chitosan, which is non-toxic and biodegradable, has good biocompatibility and excellent adsorption, so it can be used as a drug delivery vehicle. Valine, the essential amino acids, helps muscle growth and tissue recovery, and along with other amino acids. It lowers blood sugar levels and increases growth hormone production. In this study, Valine was adsorbed on magnetic chitosan which is capable of drug absorption, and Fe3O4-Valine CNPs was prepared through cross-linking with TPP (Tripolyphosphate). And then absorption and release trends of valine were investigated with the Fe3O4-Valine CNPs. Fe3O4, which has relatively high stability, is used to make the drug carrier magnetic so that the drug can be delivered to a target place. At optimal conditions, the absorption and release tendency of Fe3O4-Valine CNP was confirmed by analyzing by UV-Vis through the Ninhydrin test which is the color reaction of amino acids and by measuring the size of the particles, it was confirmed that it is suitable as a drug carrier.

Recent Understanding in Particular Matter-Mediated Aging and Age-Related Diseases (미세먼지에 의한 노화 및 노화 관련 질병에 대한 최근 연구 동향)

  • EunJin Bang;Yung Hyun Choi
    • Journal of Life Science
    • /
    • v.34 no.1
    • /
    • pp.68-77
    • /
    • 2024
  • Airborne particulate matter (PM) is an environmentally hazardous pollutant that originates from various sources. PM is comprised of solid particles and liquid droplets of diverse composition and size. Hazardous chemical compositions of PM include elemental and organic carbon, organic compounds, biological compounds and metals. Upon acute and chronic PM exposure, toxic contaminants enter and accumulate within physiological systems and prompt cell structure changes accompanied with intracellular endoplasmic reticulum stress, mitochondrial dysfunction, oxidative stress, inflammation, lipid accumulation, and cell cycle arrest. Ultimately, these cellular response leads to the development of key characteristics of aging. In addition, PM internalization enhances autophagy reflux and lysosomal dysfunction, which is involved in cell aging. Previous studies have emphasized a positive association between PM and increased mortality or decreased lifespan, although these are evidenced mostly by observational studies. Direct evidence of the link between PM and aging is still limited. This review evaluates the evidence from not only observational studies but also in vitro and in vivo evidence of PM on aging progression and age-related diseases development. This evidence is based on age-associated cellular changes including endoplasmic reticulum stress, mitochondrial dysfunction, oxidative stress, inflammation, adipose accumulation, autophagy, which strengthen the association between PM exposure and aging. Understanding the underlying cellular responses under PM may allow for the development of new therapeutic targets for PM-induced aging.

The Effects of Insulating Materials on the Magnetic Properties of Nanocrystalline FeCuNbSiB Alloy Powder Cores (FeCuNbSiB 나노결정립 합금 분말코아의 자기적 특성에 미치는 절연체의 영향)

  • Noh, T.H.;Choi, H.Y.
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.5
    • /
    • pp.186-191
    • /
    • 2004
  • The variation of magnetic properties with insulating materials(glass frits, talc and polyamide) in compressed powder cores composed of Fe$\sub$73.5/Cu$_1$Nb$_3$Si$\sub$15.5/B$\sub$7/ nanocrystalline alloy powders(size: 250~850 $\mu\textrm{m}$) and 3 wt% insulators has been investigated. Larger permeability was obtained at the frequency lower than 300~400 kHz for the powder cores including ceramic insulators(glass frits and talc) as compared to the cores with polyamide, while at higher frequency than 1 MHz the permeability of the former cores decreased rapidly. Further the cores with ceramic insulators showed larger core loss and smaller peak quality factor attained at lower frequency. On the contrary, the powder cores with polyamide exhibited high stability of permeabilities up to several MHz and superior core-loss and quality-factor properties. Moreover the dc bias property was better in the wide field range for the cores having polyamide. The enhanced magnetic properties of polyamide-added cores were attributed to the more sufficient electrical insulation between magnetic particles, where the higher insulation state was considered to be obtained from the larger volume fraction of polyamide in the powder cores.

Physico-Chemical Characteristics of Sediment in Sedimentation Tank of Infiltration Trench and Filtration System (비점오염저감시설인 침투도랑과 여과형 시설내 침강지 퇴적의 물리화학적 특성 분석)

  • Lee, Soyoung;Lee, Eun-Ju;Kim, Chulmin;Maniquiz, M.C.;Son, Youngkyu;Khim, Jeehyeong;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.9 no.3
    • /
    • pp.35-42
    • /
    • 2007
  • The paved areas such as parking lots and roads are stormwater intensive landuses since they are impervious and have high pollutant mass emissions from vehicular activity. Vehicle emissions include different pollutants such as heavy metals, oil and grease, particulates from sources such as fuels, brake pad wear and tire wear. Especially, the released heavy metals can be easily absorbed on the surface area of small particulate materials because of its ionic strength. Therefore, by constructing the sedimental tank in structural BMPs as a pre-treatment facility, the particles and heavy metals both can be removed from the runoff at an instant. To understand the physico-chemical characteristics of sediments from sedimentation tank, one-year study at an infiltration trench and filtration system was conducted to quantify the metal mass absorbed on sediments with various particle sizes. The structural BMPs for this study are located in Yongin City, Kyunggido. The research results show that Cu, Zn and Pb are dominant metal compounds in the sediments. Also the metal concentrations are highest at the ranges of $425-850{\mu}m$ particle sizes. The results will provide the basic physico-chemical information of sediments to treat it as solid wastes and to determine the design criteria of sedimentation tank in structural BMPs.

  • PDF

Synthesis and Optical Properties of M-Si(Al)-O-N (M: Sr, Ca) Phosphors for white Light Emitting Diodes (백색 발광다이오드용 M-Si(Al)-O-N (M: Sr, Ca) 형광체의 합성 및 발광 특성)

  • Lee, Seung-Jae;Lee, Jun-Seong;Kim, Young-Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.2
    • /
    • pp.41-45
    • /
    • 2012
  • Oxynitride green phosphors for white light emitting diodes (LEDs) were synthesized and their optical properties were evaluated. The N/O ratio ($\delta$) of $SrSi_2O_{2-{\delta}}N_{2+2/3{\delta}}:Eu^{2+}$ closely depended on the synthesizing conditions. The most excellent green emission (545 nm), which was assigned to the $5d{\rightarrow}4f$ transition of $Eu^{2+}$ ions, was achieved at the conditions of $1700^{\circ}C$, 5 mol% $Eu^{2+}$, and $H_2$ atmosphere. The well-developed $Ca-{\alpha}-SiAlON:Yb^{2+}$ particles with homogeneous size were obtained at m = 3 (n = 0.15) for the compound of $Ca_{0.5m-0.005}Yb_{0.005}Si_{12-(m+n)}Al_{m+n}O_nN_{16-n}$, resulting in the strong green emission at around 550 nm.