• Title/Summary/Keyword: Size of Particles

Search Result 3,980, Processing Time 0.031 seconds

Resistance to Airflow of Grain as Affected by Grain Moisture Content (곡물(穀物)의 함수율(含水率) 변화(變化)에 따른 송풍저항(送風抵抗)에 관(關)한 연구(硏究))

  • Kim, M.S.;Kim, S.R.
    • Journal of Biosystems Engineering
    • /
    • v.11 no.2
    • /
    • pp.55-65
    • /
    • 1986
  • The resistance to the passage of airflow through various agricultural products is an important consideration in the design of an aeration or drying system. The amount of resistance to airflow varied widely from one kind of grain to another, and depended upon airflow rate, surface texture and shape of the particles, the size and configuration of voids, and foreign and fine material in the grain bed. The airflow rate was the major factor considered on this kind of study in the early stages. But these days, the studies on the resistance to airflow of grain affected by grain moisture content and foreign and fine material have been widely carried out. However the foreign an fine material in the grain bed could not be a major factor on the study in Korea because there were only a few grain process procedure after harvesting it. The objectives of this study were to investigate the effect of moisture content and airflow rate on airflow resistance to grain, and to develop a model to predict the static pressure drop across the grain bed as a function of moisture content and airflow rate. The rough rice varieties, Akibare, Milyang 15 (Japonica types), Samkwang, Backyang (Indica types)and covered barley variety, Olbori, which were harvested in 1985 were used in the experiment after cleaning them. Resistances to airflow of grain were investigated at four levels of moisture content (13-25%, wb.) for ten different airflow rates($0.01-0.15m^3/sm^2$). The results of this study are summarized as follows; 1. Theaverage bulk densities were $585.3kg/m^3$ for rough rice and $691.6kg/m^3$ for barley at the loose fill, and were $648.8kg/m^3$ for rough rice and $758.2kg/m^3$ for barley at the packed fill. The pressure drops at the packed fill beds were approximately 1.4 to 1.8 times higher than those at the loose fill beds. 2. The pressure drops across grain beds deceased with the increase of moisture content and increased with airflow rate. The decreasing rates of pressure drop across grain beds according to the moisture contents at the lower airflow rates were higher than those at the higher airflow rates, and the increasing rates of pressure drop according to the airflow rates at the lower moisture contents were higher those at higher moisture contents. 3. The pressure drop across barley bed were much higher than rough rice beds and the pressure drops across Japonica type rough rice beds were a little higher than Indica type. 4. The mathematical models to predict the pressure drop across grain beds as a function of moisture content and airflow rate were developed from these experiments.

  • PDF

The Effect of NH3 Concentration during Co-precipitation of Precursors from Leachate of Lithium-ion Battery Positive Electrode Active Materials (리튬이차전지 양극활물질의 암모니아 침출액에서 공침법에 의한 활물질 전구체의 합성에 대한 암모니아 농도의 영향)

  • Park, Sanghyuk;Ku, Heesuk;Lee, Kyoung-Joon;Song, Jun Ho;Kim, Sookyung;Sohn, Jeongsoo;Kwon, Kyungjung
    • Resources Recycling
    • /
    • v.24 no.6
    • /
    • pp.9-16
    • /
    • 2015
  • In a recycling scheme of spent lithium ion batteries, a co-precipitation process for the re-synthesis of precursor is essential after the leaching of lithium ion battery scraps. In this study, the effect of ammonia as impurity during the co-precipitation process was investigated in order to re-synthesize a precursor of Ni-rich cathode active material $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ (NCM 622). As ammonia concentration increases from 1 M (the optimum condition for synthesis of the precursors based on 2 M of metal salt solution) to 4 M, the composition of obtained precursors deviates from the designed composition, most notably for Ni. The Ni co-precipitation efficiency gradually decreases from 100% to 87% when the concentration of ammonia solution increases from 1 M to 4 M. Meanwhile, the morphological properties of the obtained precursors such as sphericity, homogeneity and size distribution of particles were also investigated.

Thermal Shock Resistance According to the Manufacturing Process of Lanthanum Gadolinium Zirconate Ceramic Igot for Thermal Barrier Coating by Electron Beam in the La2O3-Gd2O3-ZrO2 System (전자빔 증착 열차폐 코팅용 란타늄-가돌리늄 지르코네이트(La2O3-Gd2O3-ZrO2계) 세라믹 잉곳의 제조공정에 따른 열충격 저항성)

  • Choi, Seona;Chae, Jungmin;Kim, Seongwon;Lee, Sungmin;Han, Yoonsoo;Kim, Hyungtae;Jang, Byungkoog;Oh, Yoonsuk
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.6
    • /
    • pp.465-472
    • /
    • 2017
  • The ingot fabrication conditions related with the thermal shock bearing phase and microstructure have investigated for the rare earth zirconate ceramic material, lanthanum gadolinium zirconate, as a thermal barrier coating using electron beam evaporation method. The thermal shock resistance of the prepared ingot was evaluated by high energy electron beam irradiation. The rare earth zirconate ceramic powder was prepared by controlling the raw material powder composition of $La_2O_3$, $Gd_2O_3$ and $ZrO_2$ so as to have a composition of $(La_{0.3}Gd_{0.7})_2Zr_2O_7$ which was selected from the former study. Ingot samples were prepared under two conditions. The first condition is prepared by sintering the prepared powder mixture to form an ingot. The second condition is prepared by calcining the prepared powder mixture to form a composite phase and then sintering to form an ingot. X-ray diffraction(XRD) and Scanning Electron Microscope(SEM) were used to analyze phase forming behavior and microstructure of ingot samples. Nanoindentation method used to obtain elastic modulus and hardness of each ingot specimen. Also the stress distribution of ingot was simulated by using FEM method assuming the ingot surface was exposed to electron beam. As a results, in the case of an ingot having a network-shaped microstructure in which relatively coarse pores are included, it seems that the thermal shock resistance was higher than in the case of an ingot having a microstructure composed of relatively fine grains only or particles with the similar level size when the high energy electron beam irradiation.

Treatment of Dredging Suspended Solids Using Chitosan Coagulant (Chitosan 응집제를 이용한 준설토 부유물질 처리)

  • Lee, Jun-Ho;Yang, Seung-Ho;Shin, Yiung-Kyewn;Bang, Ki-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.11
    • /
    • pp.834-846
    • /
    • 2011
  • The objective of this study is to development of IDFIS system, that are consisted of hydrocyclone, rapid flocculation and inclined settler with chitosan coagulant. As the results of Jar test, a chitosan optimum dosage of 40 mg/L for river sediment, and 5 mg/L for tunnelling wastewater sediment, which these conditions leaves of residual turbidity of less than 5 NTU. Because of the effectiveness of chitosan in removing turbidity was independent on pH, the operation of IDFIS system would be simple. The synthesized turbidity was made with clay particles, river sediment, river suspended sediment, and tunnelling wastewater sediment. Results indicate that the mean overall removal efficiency of turbidity, SS, COD and TP were 98%, 99%, 85% and 95%, respectively. Chitosan is very efficient in removing turbidity in the entire turbidity range examined. IDFIS system would have possibility with compact design, because of the increase of floc size favours the floc settling speed and reduces the settling time.

Development of relationship equation for vehicle sensor signal and observed rainfall (차량용 강우센서의 Signal과 관측강우의 관계식 개발)

  • Lee, Suk Ho;Kim, Young Gon;Kim, Byung Sik
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.1
    • /
    • pp.29-35
    • /
    • 2017
  • A vehicle rainfall sensor is made to control the operating speed of wipers depending on rainfall. Therefore this is the apparatus to determine the velocity phase of the wipers roughly based on the amount of rainfall. However, the technology which can judge the size of rainfall amount besides determining speed level of the wipers is developing according to the development of the function of rainfall sensor due to the development of technology. In this study, a rainfall measurement by using light scattering by precipitation particles was used. This measurement is to use light signal reflection from front glass and the bigger particle is the less detection of light by light scattering. The detection area of the rainfall sensor and detection channel were extended sizes to increase the accuracy of the rainfall. Also the W-S-R relational expression was developed by using a relationship between the specific precipitation (R) and the amount of sensor detection (S) when there is speed change of the wipers (W) and an indoor rainfall apparatus was used to convert sensing signal to rainfall. The signal system of vehicle rainfall sensor can be converted to the actual rainfall amount by using this formula and if this is provided to users then the vehicle observation network can produce higher-resolution than actual observation network can be produced.

Effect of Dry and Wet Millings on Physicochemical Properties of Black Rice Flours (건식 및 습식제분 흑미 쌀가루의 물리화학적 특성)

  • Jun, Hyun-Il;Yang, Eun-Jin;Kim, Young-Soo;Song, Geun-Seoup
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.7
    • /
    • pp.900-907
    • /
    • 2008
  • The physicochemical properties of black rice flours produced from dry and wet milling were carried out to investigate their applications in food processing industry. The dry milled black rice flours showed lower fat, protein, ash, and anthocyanin contents than those of wet milled black rice flours with no effect due to number of millings. Average particle sizes ($379{\sim}288\;{\mu}m$) of dry milled flours were bigger than those ($336{\sim}253\;{\mu}m$) of wet milled flours. Particles with 60 mesh or more increased with increasing milling times. Wet milled flours had higher damaged starch, water solubility index (WSI), and water absorption index (WAI) compared to dry milled flours. Pasting properties measured by rapid visco analyzer (RVA) resulted in higher pasting temperatures in dry milled flours ($62.5{\sim}69.4^{\circ}C$) than wet milled flours ($46.1{\sim}46.4^{\circ}C$). As the number of milling times increased, pasting temperature of wet milled flours were not effected. Dry and wet milling resulted in reduced trough, final viscosity, and consistency with increasing milling times.

Preparation of Cr2O3/AP Composites and their Thermal Decomposition Characteristics (Cr2O3/AP 복합체 제조 및 그 열분해 특성)

  • Jung, Jae-Yun;Kim, Jae-Kyeong;Shim, Hong-Min;Kim, Hyoun-Soo;Koo, Kee-Kahb
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.145-153
    • /
    • 2015
  • $Cr_2O_3/AP$ (ammonium perchlorate) energetic composites were prepared by a method of solvent/anti-solvent. XRD analysis revealed that the crystalline structure of AP in $Cr_2O_3/AP$ composites is the same as that of pure AP. SEM photomicrograph shows that an average size of cuboid $Cr_2O_3/AP$ composites is approximately $2.5{\mu}m$. TGA analysis shows that the addition of submicron $Cr_2O_3$ particles into AP lowers the HTD (high-temperature decomposition) compared to that of neat AP and the activation energy of the $Cr_2O_3/AP$ composites was calculated by the isoconversional Starlink method. Considering changes in the activation energy, the decomposition reaction mechanism of AP was suggested as follows; the decomposition with the formation of nucleation sites renders formation of porous structure in the composites up to conversion of about 0.25 and after further conversion of over 0.3, it seems that decomposition reaction vigorously takes place rather than sublimation of AP.

Comparative study on dynamic properties of argillaceous siltstone and its grouting-reinforced body

  • Huang, Ming;Xu, Chao-Shui;Zhan, Jin-Wu;Wang, Jun-Bao
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.333-352
    • /
    • 2017
  • A comparison study is made between the dynamic properties of an argillaceous siltstone and its grouting-reinforced body. The purpose is to investigate how grout injection can help repair broken soft rocks. A slightly weathered argillaceous siltstone is selected, and part of the siltstone is mechanically crushed and cemented with Portland cement to simulate the grouting-reinforced body. Core specimens with the size of $50mm{\times}38mm$ are prepared from the original rock and the grouting-reinforced body. Impact tests on these samples are then carried out using a Split Hopkinson Pressure Bar (SHPB) apparatus. Failure patterns are analyzed and geotechnical parameters of the specimens are estimated. Based on the experimental results, for the grouting-reinforced body, its shock resistance is poorer than that of the original rock, and most cracks happen in the cementation boundaries between the cement mortar and the original rock particles. It was observed that the grouting-reinforced body ends up with more fragmented residues, most of them have larger fractal dimensions, and its dynamic strength is generally lower. The mass ratio of broken rocks to cement has a significant effect on its dynamic properties and there is an optimal ratio that the maximum dynamic peak strength can be achieved. The dynamic strain-softening behavior of the grouting-reinforced body is more significant compared with that of the original rock. Both the time dependent damage model and the modified overstress damage model are equally applicable to the original rock, but the former performs much better compared with the latter for the grouting-reinforced body. In addition, it was also shown that water content and impact velocity both have significant effect on dynamic properties of the original rock and its grouting-reinforced body. Higher water content leads to more small broken rock pieces, larger fractal dimensions, lower dynamic peak strength and smaller elastic modulus. However, the water content plays a minor role in fractal dimensions when the impact velocity is beyond a certain value. Higher impact loading rate leads to higher degree of fragmentation and larger fractal dimensions both in argillaceous siltstone and its grouting-reinforced body. These results provide a sound basis for the quantitative evaluation on how cement grouting can contribute to the repair of broken soft rocks.

Synthesis and Magnetic Properties of Zn, Co and Ni Substituted Manganese Ferrite Powders by Sol-gel Method

  • Kwon, Woo-Hyun;Kang, Jeoung-Yun;Lee, Jae-Gwang;Lee, Seung-Wha;Chae, Kwang-Pyo
    • Journal of Magnetics
    • /
    • v.15 no.4
    • /
    • pp.159-164
    • /
    • 2010
  • The Zn, Co and Ni substituted manganese ferrite powders, $Mn_{1-x}$(Zn, Co, Ni)$_xFe_2O_4$, were fabricated by the solgel method, and their crystallographic and magnetic properties were studied. The Zn substituted manganese ferrite, $Zn_{0.2}Mn_{0.8}Fe_2O_4$, had a single spinel structure above $400^{\circ}C$, and the size of the particles of the ferrite powder increased when the annealing temperature was increased. Above $500^{\circ}C$, all the $Mn_{1-x}$(Zn, Co, Ni)$_xFe_2O_4$ ferrite had a single spinel structure and the lattice constants decreased with an increasing substitution of Zn, Co, and Ni in $Mn_{1-x}$(Zn, Co, Ni)$_xFe_2O_4$. The Mossbauer spectra of $Mn_{1-x}Zn_xFe_2O_4$ (0.0$\leq$x$\leq$0.4) could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. For x = 0.6 and 0.8 they showed two Zeeman sextets and a single quadrupole doublet, which indicated they were ferrimagnetic and paramagnetic. And for x = 1.0 spectrum showed a doublet due to a paramagnetic phase. For the Co and Ni substituted manganese ferrite powders, all the Mossbauer spectra could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. The variation of the Mossbauer parameters are also discussed with substituted Zn, Co and Ni ions. The increment of the saturation magnetization up to x = 0.6 in $Mn_{1-x}Co_xFe_2O_4$ could be qualitatively explained using the site distribution and the spin magnetic moment of substituted ions. The saturation magnetization and coercivity of the $Mn_{1-x}$(Zn, Co, Ni)$_xFe_2O_4$ (x = 0.4) ferrite powders were also compared with pure $MnFe_2O_4$.

Physicochemical Characteristic of Korean Wheat Semolina (우리밀 Semolina의 이화학적 특성)

  • Kim, Yeon-Ju;Kim, Rae-Young;Park, Jae-Hee;Ju, Jong-Chan;Kim, Won-Tae;Chun, Soon-Sil
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.6
    • /
    • pp.837-842
    • /
    • 2010
  • The physicochemical properties of coarse semolina (CS), medium semolina (MS) and fine semolina (FS) were investigated to research method applied in noodles processing of Korean wheat semolina. Large particle (>250 ${\mu}m$) was over 75% in all semolinas, except for FS, and the particle distribution of MS and durum semolina (DS) was similar. Crude protein and crude ash were the highest in DS followed by CS>MS>FS. Crude lipid of DS was the lowest among samples and CS, MS and FS were not significantly different. L value was high in semolina with small particle distribution and starch damage was the lowest in DS followed by FS>MS. Amylose content was high in DS (29.80%) and FS (29.08%) with small particle distribution. Water binding capacity was the highest in DS, and FS showed the highest water binding capacity among Korean wheat samples. Solubility and swelling power were noticeably high in FS with low starch damage and small particle distribution. In scanning electron microscope (SEM), FS and MS showed distribution of separated fine particles of flours. From these results, the physicochemical properties of semolina showed many differences by grinding methods. FS should be applied in noodles processing through additional examination about characteristic of noodle making.