Browse > Article
http://dx.doi.org/10.7844/kirr.2015.24.6.9

The Effect of NH3 Concentration during Co-precipitation of Precursors from Leachate of Lithium-ion Battery Positive Electrode Active Materials  

Park, Sanghyuk (Department of Energy and Mineral Resources Engineering, Sejong University)
Ku, Heesuk (Department of Energy and Mineral Resources Engineering, Sejong University)
Lee, Kyoung-Joon (Korea Electronics Technology Institute, Advanced Batteries Research Center)
Song, Jun Ho (Korea Electronics Technology Institute, Advanced Batteries Research Center)
Kim, Sookyung (Urban Mine Department, Korea Institute of Geoscience and Mineral Resources)
Sohn, Jeongsoo (Urban Mine Department, Korea Institute of Geoscience and Mineral Resources)
Kwon, Kyungjung (Department of Energy and Mineral Resources Engineering, Sejong University)
Publication Information
Resources Recycling / v.24, no.6, 2015 , pp. 9-16 More about this Journal
Abstract
In a recycling scheme of spent lithium ion batteries, a co-precipitation process for the re-synthesis of precursor is essential after the leaching of lithium ion battery scraps. In this study, the effect of ammonia as impurity during the co-precipitation process was investigated in order to re-synthesize a precursor of Ni-rich cathode active material $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ (NCM 622). As ammonia concentration increases from 1 M (the optimum condition for synthesis of the precursors based on 2 M of metal salt solution) to 4 M, the composition of obtained precursors deviates from the designed composition, most notably for Ni. The Ni co-precipitation efficiency gradually decreases from 100% to 87% when the concentration of ammonia solution increases from 1 M to 4 M. Meanwhile, the morphological properties of the obtained precursors such as sphericity, homogeneity and size distribution of particles were also investigated.
Keywords
recycling; lithium ion battery; NCM; ammonia; co-precipitation;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Park, J. K. et al., 2010: Principles and applications of lithium secondary batteries, Hongrung publishing company, pp. 52-54.
2 Sun, Y.-K. et al., 2004: Synthetic optimization of $Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O_2$ via co-precipitation, Electrochim. Acta, 50, pp. 939-948.   DOI
3 Kim, H.-S. et al., 2013: Electrochemical performance of $Li[Ni_{0.7}Co_{0.1}Mn_{0.2}]O_2$ cathode materials using a coprecipitation method, J. Nanosci. Nanotechnol., 13, pp. 3303-3306.   DOI
4 Noh, M.J. and Cho, J.P., 2013: Optimized synthetic conditions of $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ cathode materials for high rate lithium batteries via co-precipitation method, J. Electrochem. Soc., 160, pp. A105-A111.
5 Son, J.-T. et al., 2013: Synthesis of $Li[Ni_{0.225}Co_{0.125}Mn_{0.65}]O_2$ as a positive electrode for lithium-ion batteries by optimizing its synthesis conditions via a hydroxide coprecipitation method, J. Phys. Chem. Solids, 74, pp. 1185-1195.   DOI
6 Xu, S. et al., 2013: Synthesis and performance of $Li[(Ni_{1/3}Co_{1/3}Mn_{1/3})_{1-x}Mg_{x}]O_2$ prepared from spent lithium ion batteries, J. Hazard. Mater., 246-247, pp. 163-172.   DOI
7 Nowak, S. et al., 2014: Effect of impurities caused by a recycling process on the electrochemical performance of $Li[Ni_{0.33}Co_{0.33}Mn_{0.33}]O_2$, J. Electroanal. Chem., 726, pp. 91-96.   DOI
8 Kim, S.K. et al., 2014: Recycling process of spent battery modules in used hybrid electric vehicles using physical/chemical treatments, Res. Chem. Intermed., 40, pp. 2447-2456.   DOI
9 Noh, M., and Cho, J., 2013: Optimized Synthetic Conditions of $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ Cathode Materials for High Rate Lithium Batteries via Co-Precipitation Method, J. Electrochem. Soc., 160, pp. A105-A111.
10 Deng, C. et al., 2008: Effect of synthesis condition on the structure and electrochemical properties of $Li[Ni_{1/3}Mn_{1/3}Co_{1/3}]O_2$ prepared by hydroxide co-precipitation method, Electrochim. Acta, 53, pp. 2441-2447.   DOI
11 Zhang S. et al., 2010: Synthetic optimization of spherical $Li[Ni_{1/3}Mn_{1/3}Co_{1/3}]O_2$ prepared by a carbonate coprecipitation method, Powder Technol., 198, pp. 373-380.   DOI
12 Liang L. et al., 2014: Co-precipitation synthesis of $Ni_{0.6}Co_{0.2}Mn_{0.2}(OH)_{2}$ precursor and characterization of $Ni_{0.6}Co_{0.2}Mn_{0.2}O_{2}$ cathode material for secondary lithium batteries, Electrochim. Acta, 130, pp. 82-89.   DOI
13 Jeon H.-J. et al., 2013: Synthesis of $Lix[Ni_{0.225}Co_{0.125}Mn_{0.65}]O_{2}$ as a positive electrode for lithium-ion batteries by optimizing its synthesis conditions via a hydroxide coprecipitation method, J. Phys. Chem. Solids, 74, pp. 1185-1195.   DOI
14 Lee, C.K. and Kim, T.-H., 2000: Leaching of cathodic active materials from spent lithium ion battery, J. of Korean Inst. of Resources Recycling, 9, pp. 37-43.
15 Kim, D.W. and Jang, S.T., 2013: Recovery of lithium and leaching behavior of NCM powder by carbon reductive treatment from $Li(NCM)O_2$ system secondary battery scraps, J. of Korean Inst. of Resources Recycling, 22, pp. 62-69.
16 Lee, M.S. et al., 2014: Leaching of valuable metals from NCM cathode active materials in spent lithium-ion battery by malic acid, J. of Korean Inst. of Resources Recycling, 23, pp. 21-29.
17 Bhuntumkomol, K., Han, K.N. and Lawson, F., 1982: The leaching behavior of nickel oxides in acid and in Ammoniacal solutions, Hydrometallurgy, 8, pp. 147-160.   DOI
18 Niinae, M. et al., 1996: Preferential leaching of cobalt, nickel and copper from cobalt-rich ferromanganese crusts with ammoniacal solution using ammonium thiosulfate and ammonium sulfite as reducing agents, Hydrometallurgy, 40, pp. 111-121.   DOI
19 Das, R.P. et al., 1986: Leaching of manganese nodules in ammoniacal medium using glucose as reductant, Hydrometallurgy, 16, pp. 335-344.   DOI
20 Rokukawa, N., 1992: Extraction of nickel, cobalt and copper from ocean cobalt crusts with ammoniacal alkaline solution, Shigen-to-sozai, 108(3), pp. 189-191.
21 Senanayake, G. et al., 2010: Comparative leaching of spent zinc-manganese-carbon batteries using sulfur dioxide in ammoniacal and sulfuric acid solutions, Hydrometallurgy, 105, pp. 36-41.   DOI
22 Ku, H.S. et al., 2015: Ammoniacal leaching for recovery of valuable metals from spent lithium-ion battery materials, J. of Korean Inst. of Resources Recycling, 24, pp. 44-50.   DOI
23 Li, J. et al., 2013: High capacity $0.5Li_{2}MnO_{3}{\cdot}0.5LiNi_{0.33}Co_{0.33}Mn_{0.33}O_{2}$ cathode material via a fast co-precipitation method, Electrochim. Acta, 87, pp. 686-692.   DOI
24 Du, K. et al., 2014: Co-precipitation synthesis of $Ni_{0.6}Co_{0.2}Mn_{0.2}(OH)_{2}$ precursor and characterization of $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_{2}$ cathode material for secondary lithium batteries, Electrochim. Acta, 130, pp. 82-89.   DOI
25 van Bommel, A. and Dahn, J.R., 2009: Synthesis of spherical and dense particles of the pure hydroxide phase $Ni_{1/3}Mn_{1/3}Co_{1/3}(OH)_{2}$, J. Electrochem. Soc., 156, A362-A365.   DOI
26 Xiang, Y., Yin, Z. and Li, X., 2014: Synthesis and characterization of manganese-, nickel-, and cobaltcontaining carbonate precursors for high capacity Li-ion battery cathodes, J. Solid State Electrochem., 18, pp. 2123-2129.   DOI
27 Hu Chuan-yue et al., 2011: Effects of synthesis conditions on layered $Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O_{2}$ positive-electrode via hydroxide co-precipitation method for lithium-ion batteries, Trans. Nonferrous Met. Soc. China., 21, 114-120.   DOI
28 Tang Z.X. et al., 1991: Preparation of manganese ferrite fine particles from aqueous solution, J. Stat. Phys., 146, pp. 38-52.
29 Lee M.-H. et al., 2004: Synthetic optimization of $Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O_{2}$ via co-precipitation, Electrochim. Acta, 50, pp. 939-948.   DOI