• 제목/요약/키워드: Size exclusion chromatography

검색결과 131건 처리시간 0.037초

Anti-Proliferative Effect of Polysaccharides from Salicornia herbacea on Induction of G2/M Arrest and Apoptosis in Human Colon Cancer Cells

  • Ryu, Deok-Seon;Kim, Seon-Hee;Lee, Dong-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권11호
    • /
    • pp.1482-1489
    • /
    • 2009
  • In this study, we investigated the anti-proliferative effect of polysaccharides from Salicornia herbacea on HT-29 human colon cancer cells. Crude polysaccharides from S. herbacea (CS) were prepared by extraction with hot steam water, and fine polysaccharides from S. herbacea (PS) were obtained through further size exclusion chromatography. The anti-proliferative effect of CS and PS were measured using the MTS assay, apoptosis analysis, cell cycle analysis, and RT-PCR. HT-29 cells were treated with CS or PS at different dosages (0.5, 1, 2, 4 mg $ml^{-1}$) for 24 or 48 h. CS and PS inhibited proliferation and stimulated apoptosis of cells in a dose-dependent manner. Flow cytometric analysis after Annexin V-FITC and PI staining revealed that treatment with CS or PS increased total apoptotic death of cells to 24.99% or 91.59%, respectively, in comparison with the control (13.51 %). PS increased early apoptotic death substantially - up to 12 times more than the control. Treatment with CS or PS resulted in a concentration-dependent increase of the G2/M cell population of the cell cycle as determined by flow cytometry. G2/M arrest was induced significantly with the highest concentration (4 mg $ml^{-1}$) of PS. RT-PCR was performed to study the correlation between G2/M arrest and transcription of cell cycle control genes. The anti-proliferative activity of CS and PS was accompanied by inhibition of cyclin B1, and Cdc 2 mRNA. Moreover, both CS and PS induced expression of the p53 tumor suppressor gene and the Cdk inhibitor p21. These results suggest that polysaccharides from S. herbacea have anti-cancer activity in human colon cancer cells.

Antitumor Activities of Spray-dried Powders with Different Molecular Masses Fractionated from the Crude Protein-bound Polysaccharide Extract of Agaricus blazei Murill

  • Hong, Joo-Heon;Kim, Seok-Joong;Ravindra, Pogaku;Youn, Kwang-Sup
    • Food Science and Biotechnology
    • /
    • 제16권4호
    • /
    • pp.600-604
    • /
    • 2007
  • In this study, we first prepared 3 kinds of powders with different molecular masses from the crude protein-bound polysaccharide extract of Agraricus blazei Murill through ultrafiltration, followed by spray-drying. Then, the antitumor activities of the powders were analyzed. Size exclusion chromatography coupled with a multi-angle laser-light-scattering system showed the 3 powders had the following molecular ranges: below 10 kDa (SD-1), 10 to 150 kDa (SD-2), and above 150 kDa (SD-3), representing peak molecular weights of $8.26{\times}10^3,\;9.65{\times}10^4$, and $5.94{\times}10^6\;g/mol$, respectively. All the powders stimulated macrophage RAW264.7 cells to produce nitric oxide, of which SD-2 and SD-3 were superior to the crude extract powder (CP-SD), while SD-1 showed the lowest activity. Similar results were found for their cytotoxicities against human cancer cell lines (A549, MCF-7, and AGS), where the highest activity was obtained with the SD-2 treatment for 72 hr at $1,000\;{\mu}g/mL$. The MCF-7 cell line was less sensitive to the powders than the other cells. From this research we found that ultrafiltration, in combination with spray-drying, is applicable for preparing protein-bound polysaccharide powders with higher antitumor activities.

황과 산소를 함유하는 새로운 Schiff Base 고분자의 합성, 특성분석, 열적 안정성과 전도성 (Synthesis, Characterization, Thermal Stability and Conductivity of New Schiff Base Polymer Containing Sulfur and Oxygen Bridges)

  • Culhaoglu, Suleyman;Kaya, Ismet
    • 폴리머
    • /
    • 제39권2호
    • /
    • pp.225-234
    • /
    • 2015
  • In this study, we proposed to synthesize thermally stable, soluble and conjugated Schiff base polymer (SbP). For this reason, a specific molecule namely 4,4'-thiodiphenol which has sulfur and oxygen bridge in its structure was used to synthesize bi-functional monomers. Bi-functional amino and carbonyl monomers namely 4,4'-[thio-bis(4,1-phenyleneoxy)] dianiline (DIA) and 4,4'-[thiobis(4,1-phenyleneoxy)]dibenzaldehyde (DIB) were prepared from the elimination reaction of 4,4'-thiodiphenol with 4-iodonitrobenzene and 4-iodobenzaldehyde, respectively. The structures of products were confirmed by elemental analysis, FTIR, $^1H$ NMR and $^{13}C$ NMR techniques. The molecular weight distribution parameters of SbP were determined by size exclusion chromatography (SEC). The synthesized SbP was characterized by solubility tests, TG-DTA and DSC. Also, conductivity values of SbP and SbP-iodine complex were determined from their solid conductivity measurements. The conductivity measurements of doped and undoped SbP were carried out by Keithley 2400 electrometer at room temperature and atmospheric pressure, which were calculated via four-point probe technique. When iodine was used as a doping agent, the conductivity of SbP was observed to be increased. Optical band gap ($E_g$) of SbP was also calculated by using UV-Vis spectroscopy. It should be stressed that SbP was a semiconductor which had a potential in electronic and optoelectronic applications, with fairly low band gap. SbP was found to be thermally stable up to $300^{\circ}C$. The char of SbP was observed 29.86% at $1000^{\circ}C$.

화학침전을 이용한 발효액의 젖산 회수 및 유기물 특성분석 (Recovery and Characterization of Lactic Acid from Fermentation Broth Using Chemical Precipitation)

  • 이원태
    • 유기물자원화
    • /
    • 제26권1호
    • /
    • pp.47-53
    • /
    • 2018
  • 유기성 폐기물 소화공정의 발효액에서 젖산(lactic acid)을 회수하기 위해 화학침전법을 평가하였다. 젖산(lactic acid)의 회수율을 높이기 위하여 화학침전제 종류와 교반속도 및 침전시간 등 반응조건이 회수율 향상에 미치는 영향을 살펴보았다. 화학침전제의 종류에 관계없이 주입양이 증가할수록 젖산(lactic acid) 회수율이 증가하는 경향을 보였으며, CaO가 $Ca(OH)_2$$CaCO_3$에 비하여 높은 회수율을 나타냈다. CaO를 사용한 반응조건 최적화 실험결과, 교반속도 180 rpm, 침전시간 24 h, ethanol 주입량 25%(v/v)에서 회수율이 48%로 가장 높게 나타났다. 본 연구에서는 발효액 내 젖산(lactic acid)의 농도만 고려하여 주입할 침전제의 양을 계산하였기 때문에 실제 적용을 위해서는 발효액의 유기산 종류 및 농도를 고려하여 침전제의 투입량을 결정해야할 것이다. 유기물의 정성적 분석(FEEM, SEC) 결과로 볼 때 침전공정은 유기산의 특성에 큰 영향을 미치지 않았다.

대두유의 탈취과정에서 생성되는 Dimeric Acids (Formation of Dimeric Acids in Soybean Oil in the Deodorizing System)

  • 박철수;윤광로
    • 한국식품과학회지
    • /
    • 제30권3호
    • /
    • pp.494-497
    • /
    • 1998
  • 본 연구는 대두유의 탈취과정에서 생성되는 dimeric acid의 생성추이를 조사하여 이들의 생성이 최소화될 수 있는 탈취조건을 설정하기 위하여 진행되었으며, 이 조건에서 대두유의 품질을 측정하였다. $250^{\circ}C$, 1시간 또는 $240^{\circ}C$, 2시간의 탈취조건에서부터 dimeric acid가 생성되었으며 $280^{\circ}C$에서 1시간 및 2시간 탈취시 dimeric acid의 함량은 각각 2.81%, 3.39%로 증가하였다. Dimeric acid의 생성 억제 여부를 조사하기 위하여 탈취중에 첨가된 citric acid 및 catechin의 효과를 관찰한 결과 dimeric acid의 생성은 무첨가군에 비하여 탈취온도 $260^{\circ}C$까지 억제되었다. 탈취된 대두유의 품질을 평가하기 위하여 색조, 점도 등을 측정한 결과 $240^{\circ}C$에서 2시간 이하 또는 $250^{\circ}C$에서 1시간 이하의 탈취조건에서 가장 좋은 대두유의 성상을 나타냈다. 이상의 모든 결과를 종합하면 $240^{\circ}C$에서 2시간 또는 $250^{\circ}C$에서 1시간의 탈취조건에서dimeric acid의 생성을 억제할 수 있으며 이 조건에서 탈취된 대두유의 색조와 점도는 양호하였다.

  • PDF

열 장 흐름 분획장치의 제작과 효율성에 관한 연구 (A Study of Construction and Efficacy of Thermal Field-Flow Fractionation)

  • 이대운;허욱환;전선주;이인호
    • 대한화학회지
    • /
    • 제36권3호
    • /
    • pp.419-427
    • /
    • 1992
  • 본 연구에서는 열 장 흐름 분획장치를 제작하고 이를 이용하여 폴리스티렌의 머무름과 선택성을 조사하였으며 최적 분리조건을 결정하였다. 열 장 흐름 분획장치의 채널 부분은 열전도도가 좋은 구리판을 윗벽과 아랫벽으로 하여 그 사이에 Mylar spacer를 끼워 제작하였다. 구리판 표면은 이상적인 유선형 흐름이 이루어지도록 매끈하고 굴곡이 없도록 세공하였으며, Mylar spacer는 채널을 형성하도록 잘라낸 후 거친 부분을 사포로 갈아내었다. 윗 구리판은 히터를 넣어 온도를 높였고 아래 구리판은 수도물을 이용하여 온도를 낮추어 온도 구배를 주었다. 폴리스티렌의 머무름은 분자량과 채널에 가해준 온도차가 커지면 증가하였고, 일정한 온도차에서 차가운 벽의 온도를 20∼$45^{\circ}C$로 높히면 감소하였다. 시료의 선택성은 크기 배제 크로마토그래피보다 훨씬 좋았으며, 머무름이 큰 용질일수록 선택성이 좋았다. 이론단의 높이는 유속과 비례하였으며, 이로부터 폴리스티렌의 다분산도를 측정할 수 있었다.

  • PDF

Simulated Moving Bed Chromatography의 시각적 설명 (Visual Demonstration of Simulated Moving Bed)

  • 오난숙;이종호;김진일;구윤모
    • Korean Chemical Engineering Research
    • /
    • 제43권3호
    • /
    • pp.360-365
    • /
    • 2005
  • SMB는 연속 크로마토그래피 공정으로써 회분식 크로마토그래피보다 이동상의 소비를 줄이고 높은 농도, 높은 수율의 생산성의 장점을 가지고 있다. 그러나 운전상의 복잡성 때문에 이 공정을 이해하기 어렵다. 본 실험에서는 서로 다른 색깔을 지닌 두 물질의 분리를 시도함으로써 공정의 이해를 용이하게 하였다. 실험에서 사용된 물질은 Blue dextran과 Orange G로서 각각 파란색과 오렌지 색을 띤다. 실험은 4개의 존으로 구성된 SMB로써 zone VI에서 zone I으로 재순환 되지 않는 열린 루프계가 적용되었다. 운전 조건은 Standing wave design를 이용하였으며 extract와 raffinate에서 높은 순도와 수율을 가질 수 있도록 디자인하였다. 단일 칼럼을 이용한 실험을 통해서 여러 유량에서 비선형 흡착 평형식과 실험식으로부터 물질전달계수를 얻었다. Extract와 raffinate의 농도분포 곡선은 모사 결과와 거의 일치하였다. Extract와 raffinate의 순도는 99.49%와 98.89%이며 두 물질의 수율은 모두 98%였다.

Cloning, Purification and NMR Studies on β-catenin C-terminal Domain

  • Oh, Jeongmin;Choi, Sooho;Yun, Ji-Hye;Ko, Yoon-Joo;Choi, Kang-Yell;Lee, Weontae
    • 한국자기공명학회논문지
    • /
    • 제21권2호
    • /
    • pp.72-77
    • /
    • 2017
  • ${\beta}-catenin$ is a key signaling protein which regulates cell signaling and gene transcription. Abnormal activation of ${\beta}-catenin$ is linked to many cancers, particularly with colorectal cancers. Although many genetic and biological studies on $Wnt/{\beta}-catenin$ have been reported and structures of the complex between ${\beta}-catenin$ and its diverse binding partners have been published, many of them have focused on armadillo repeat domain of ${\beta}-catenin$. Both N- and C-terminal domains have been suggested to regulate interactions of ${\beta}-catenin$ with other molecules, but still little is known about the C-terminal unstructured domain. To investigate the structure of this domain, construct of C-terminus was designed and structural studies were performed using size exclusion chromatography (SEC), circular dichroism (CD), fluorescence and nuclear magnetic resonance (NMR) spectroscopy. We observed that not only the purified full-length construct but the purified C-terminal construct also dimerizes in solution by SEC, suggesting that this domain involves in dimerization of ${\beta}-catenin$. CD and fluorescence data indicate its flexibility and structural formation in the presence of membrane environments.

Optimization, Purification, and Characterization of Haloalkaline Serine Protease from a Haloalkaliphilic Archaeon Natrialba hulunbeirensis Strain WNHS14

  • Ahmed, Rania S;Embaby, Amira M;Hassan, Mostafa;Soliman, Nadia A;Abdel-Fattah, Yasser R
    • 한국미생물·생명공학회지
    • /
    • 제49권2호
    • /
    • pp.181-191
    • /
    • 2021
  • The present study addresses isolation, optimization, partial purification, and characterization of a haloalkaline serine protease from a newly isolated haloarchaeal strain isolated from Wadi El Natrun in Egypt. We expected that a two-step sequential statistical approach (one variable at a time, followed by response surface methodology) might maximize the production of the haloalkaline serine protease. The enzyme was partially purified using Hiprep 16/60 sephacryl S-100 HR gel filtration column. Molecular identification revealed the newly isolated haloarchaeon to be Natrialba hulunbeirensis strain WNHS14. Among several tested physicochemical determinants, casamino acids, KCl, and NaCl showed the most significant effects on enzyme production as determined from results of the One-Variable-At-A-time (OVAT) study. The BoxBehnken design localized the optimal levels of the three key determinants; casamino acids, KCl, and NaCl to be 0.5% (w/v), 0.02% (w/v), and 15% (w/v), respectively, obtaining 62.9 U/ml as the maximal amount of protease produced after treatment at 40℃, and pH 9 for 9 days with 6-fold enhancement in yield. The enzyme was partially purified after size exclusion chromatography with specific activity, purification fold, and yield of 1282.63 U/mg, 8.9, and 23%, respectively. The enzyme showed its maximal activity at pH, temperature, and NaCl concentration optima of 10, 75℃, and 2 M, respectively. Phenylmethylsulfonyl fluoride (PMSF, 5 mM) completely inhibited enzyme activity.

Molecular and Enzymatic Features of Homoserine Dehydrogenase from Bacillus subtilis

  • Kim, Do Hyeon;Nguyen, Quyet Thang;Ko, Gyeong Soo;Yang, Jin Kuk
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권12호
    • /
    • pp.1905-1911
    • /
    • 2020
  • Homoserine dehydrogenase (HSD) catalyzes the reversible conversion of ʟ-aspartate-4-semialdehyde to ʟ-homoserine in the aspartate pathway for the biosynthesis of lysine, methionine, threonine, and isoleucine. HSD has attracted great attention for medical and industrial purposes due to its recognized application in the development of pesticides and is being utilized in the large scale production of ʟ-lysine. In this study, HSD from Bacillus subtilis (BsHSD) was overexpressed in Escherichia coli and purified to homogeneity for biochemical characterization. We examined the enzymatic activity of BsHSD for ʟ-homoserine oxidation and found that BsHSD exclusively prefers NADP+ to NAD+ and that its activity was maximal at pH 9.0 and in the presence of 0.4 M NaCl. By kinetic analysis, Km values for ʟ-homoserine and NADP+ were found to be 35.08 ± 2.91 mM and 0.39 ± 0.05 mM, respectively, and the Vmax values were 2.72 ± 0.06 μmol/min-1 mg-1 and 2.79 ± 0.11 μmol/min-1 mg-1, respectively. The apparent molecular mass determined with size-exclusion chromatography indicated that BsHSD forms a tetramer, in contrast to the previously reported dimeric HSDs from other organisms. This novel oligomeric assembly can be attributed to the additional C-terminal ACT domain of BsHSD. Thermal denaturation monitoring by circular dichroism spectroscopy was used to determine its melting temperature, which was 54.8℃. The molecular and biochemical features of BsHSD revealed in this study may lay the foundation for future studies on amino acid metabolism and its application for industrial and medical purposes.