Browse > Article
http://dx.doi.org/10.48022/mbl.1904.04003

Optimization, Purification, and Characterization of Haloalkaline Serine Protease from a Haloalkaliphilic Archaeon Natrialba hulunbeirensis Strain WNHS14  

Ahmed, Rania S (Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City for Scientific Research and Technological Applications)
Embaby, Amira M (Institute of Graduate Studies and Research, Biotechnology Department, Alexandria University)
Hassan, Mostafa (Institute of Graduate Studies and Research, Environmental Studies Department, Alexandria University)
Soliman, Nadia A (Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City for Scientific Research and Technological Applications)
Abdel-Fattah, Yasser R (Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City for Scientific Research and Technological Applications)
Publication Information
Microbiology and Biotechnology Letters / v.49, no.2, 2021 , pp. 181-191 More about this Journal
Abstract
The present study addresses isolation, optimization, partial purification, and characterization of a haloalkaline serine protease from a newly isolated haloarchaeal strain isolated from Wadi El Natrun in Egypt. We expected that a two-step sequential statistical approach (one variable at a time, followed by response surface methodology) might maximize the production of the haloalkaline serine protease. The enzyme was partially purified using Hiprep 16/60 sephacryl S-100 HR gel filtration column. Molecular identification revealed the newly isolated haloarchaeon to be Natrialba hulunbeirensis strain WNHS14. Among several tested physicochemical determinants, casamino acids, KCl, and NaCl showed the most significant effects on enzyme production as determined from results of the One-Variable-At-A-time (OVAT) study. The BoxBehnken design localized the optimal levels of the three key determinants; casamino acids, KCl, and NaCl to be 0.5% (w/v), 0.02% (w/v), and 15% (w/v), respectively, obtaining 62.9 U/ml as the maximal amount of protease produced after treatment at 40℃, and pH 9 for 9 days with 6-fold enhancement in yield. The enzyme was partially purified after size exclusion chromatography with specific activity, purification fold, and yield of 1282.63 U/mg, 8.9, and 23%, respectively. The enzyme showed its maximal activity at pH, temperature, and NaCl concentration optima of 10, 75℃, and 2 M, respectively. Phenylmethylsulfonyl fluoride (PMSF, 5 mM) completely inhibited enzyme activity.
Keywords
Protease; Haloalkaliphilic; archaea; Natrialba hulunbeirensis; enzyme production;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Oren A. 2007. Biodiversity in highly saline environments, in: Gerday, C., Glansdorff, N. (eds.), pp 223-231. Physiology and Biochemistry of Extremophiles. ASM Press, Washington.
2 Patel R, Dodia M, Singh SP. 2005. Extracellular alkaline protease from a newly isolated haloalkaliphilic Bacillus sp., Production and optimization. Process Biochem . 40: 3569-3575.   DOI
3 Joshi RH, Dodia MS, Singh SP. 2008. Production and optimization of a commercially viable alkaline protease from a haloalkaliphilic bacterium. Biotechnol. Bioprocess Eng. 13: 552-559.   DOI
4 Sinha R, Khare SK. 2013. Characterization of detergent compatible protease of a halophilic Bacillus sp. EMB9: Differential role of metal ions in stability and activity. Bioresour. Technol. 145: 357-361.   DOI
5 Selim S, Hagagy N, Aziz MA, El-Meleigy ES, Pessione E. 2014. Thermostable alkaline halophilic-protease production by Natronolimnobius innermongolicus WN18. Nat. Prod. Res. 28: 1476-1479.   DOI
6 Rahman RNZA, Geok LP, Basri M, Salleh AB. 2005. Physical factors affecting the production of organic solvent-tolerant protease by Pseudomonas aeruginosa strain K. Bioresour. Technol. 96: 429-436.   DOI
7 VijayAnand S, Hemapriya J, Selvin J, Kiran S. 2010. Production and optimization of haloalkaliphilic protease by an extremophile-Halobacterium sp. Js1, isolated from thalassohaline environment. Glob. J. Biotechnol. Biochem. 5: 44-49.
8 Gupta M, Aggarwal S, Navani NK, Choudhury B. 2015. Isolation and characterization of a protease-producing novel haloalkaliphilic bacterium Halobiforma sp. strain BNMIITR from Sambhar lake in Rajasthan, India. Ann. Microbiol. 65: 677-686.   DOI
9 Sanchez-Porro C, Mellado E, Bertoldo C, Antranikian G, Ventosa A. 2003. Screening and characterization of the protease CP1 produced by the moderately halophilic bacterium Pseudoalteromonas sp. strain CP76. Extremophiles 7: 221-228.   DOI
10 Schiralid C, Giuliano M, De Rosa M. 2002. Perspectives on biotechnological applications of archaea. Archaea 1: 75-86.   DOI
11 Xu Y, Zhou P, Tian X. 1999. Characterization of two novel haloalkaliphilic archaea Natronorubrurn bangense gen. nov., sp. nov. and Natronorubrurn tibetense gen. nov., sp. nov. Int. Syst. Evol. Bacteriol. 49: 261-266.   DOI
12 Studdert CA, Herrera Seitz MK, Plasencia Gil MI, Sanchez JJ, de Castro RE. 2001. Purification and biochemical characterization of the haloalkaliphilic archaeon Natronococcus occultus extracellular serine protease. J. Basic Microbiol. 41: 375-383.   DOI
13 Vidyasagar M, Prakash SB, Sreeramulu K. 2006. Optimization of culture conditions for the production of haloalkaliphilic thermostable protease from an extremely halophilic archaeon Halogeometricum sp. TSS101. Lett. Appl. Microbiol. 43: 385-391.   DOI
14 Woese CR, Fox GE. 1977. Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proc. Natl. Acad. Sci. 74: 5088- 5090.   DOI
15 Ferrero MA, Castro GR, Abate CM, Baigori MD, Sineriz F. 1996. Thermostable alkaline proteases of Bacillus licheniformis MIR 29: isolation, production and characterization. Appl. Microbiol. Biotechnol. 45: 327-332.
16 Abdel-Fattah YR, El-Enshasy HA, Soliman NA, El-Gendi H. 2009. Bioprocess development for production of alkaline protease by Bacillus pseudofirmus Mn6 through statistical experimental designs. J. Microbiol. Biotechnol. 19: 378-386.   DOI
17 Shi W, Tang X-F, Huang Y, Gan F, Tang B, Shen P. 2006. An extracellular halophilic protease SptA from a halophilic archaeon Natrinema sp. J7: Gene cloning, expression and characterization. Extremophiles 10: 599-606.   DOI
18 Akolkar A, Bharambe N, Trivedi S, Desai A. 2009. Statistical optimization of medium components for extracellular protease production by an extreme haloarchaeon, Halobacterium sp. SP1(1). Lett. Appl. Microbiol. 48: 77-83.   DOI
19 D'Alessandro CP, De Castro RE, Gimenez MI, Paggi RA. 2007. Effect of nutritional conditions on extracellular protease production by the haloalkaliphilic archaeon Natrialba magadii. Lett. Appl. Microbiol. 44: 637-642.   DOI
20 Castillo AM, Gutierrez MC, Kamekura M, Ma Y, Cowan DA, Jones BE, et al. 2006. Halovivax asiaticus gen. nov., sp. nov., a novel extremely halophilic archaeon isolated from Inner Mongolia, China. Int. Syst. Evol. Microbiol. 56: 765-770.   DOI
21 Gimenez MI, Studdert CA, Sanchez JJ, De Castro RE. 2000. Extracellular protease of Natrialba magadii: purification and biochemical characterization. Extremophiles 4: 181-188.   DOI
22 Gomes J, Steiner W. 2004. The biocatalytic potential of extremo philes and extremozymes. Food Technol. Biotechnol. 42: 223-235.
23 Gupta M, Sharma P, Dev K, Sourirajan A. 2016. Halophilic bacteria of Lunsu produce an array of industrially important enzymes with salt tolerant activity. Biochem. Res. Int. 2016: 1-10.
24 Hacene H, Rafa F, Chebhouni N, Boutaiba S, Bhatnagar T, Baratti JC, et al. 2004. Biodiversity of prokaryotic microflora in El Golea Salt lake, Algerian Sahara. J. Arid Environ. 58: 273-284.   DOI
25 Ghorbel B, Sellami-Kamoun A, Nasri M. 2003. Stability studies of protease from Bacillus cereus BG1. Enzyme Microb. Technol. 32: 513-518.   DOI
26 Fan H, Xue Y, Ma Y, Ventosa A, Grant WD. 2004. Halorubrum tibetense sp. nov., a novel haloalkaliphilic archaeon from Lake Zabuye in Tibet, China. Int. Syst. Evol. Microbiol. 54: 1213-1216.   DOI
27 Chauhan B, Gupta R. 2004. Application of statistical experimental design for optimization of alkaline protease production from Bacillus sp. RGR-14. Process Biochem. 39: 2115-2122.   DOI
28 Desmarais D, Jablonski PE, Fedarko NS, Roberts MF. 1997. 2-Sulfotrehalose, a novel osmolyte in haloalkaliphilic archaea. J. Bacteriol. 179: 3146-3153.   DOI
29 DasSarma S, DasSarma P. 2001. Halophiles, eLS. John Wiley and Sons Ltd, Chichester.
30 Adams MWW, Kelly RM. 1995. Enzymes from microorganisms in extreme environments. Chem. Eng. News. 17: 32-42.   DOI
31 Paggi RA, Martone CB, Fuqua C, De Castro RE. 2003. Detection of quorum sensing signals in the haloalkaliphilic archaeon Natronococcus occultus. FEMS Microbiol. Lett. 221: 49-52.   DOI
32 Manikandan M, Kannan V, Velikonja BH, Pasic L. 2011. Optimization of growth medium for protease production by Haloferax Lucentensis VKMM 007 by response surface methodology. Braz. J. Microbiol. 42: 818-824.   DOI
33 Mortez E, Krogh TN, Vorum H, Gorg A. 2001. Improved silver staining protocols for high sensitivity protein identification using matrix-assisted laser desorption/ionization-time of flight analysis. Proteomics 1: 1359-1363.   DOI
34 Oren A. 2002. Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J. Ind. Microbiol. Biotechnol. 28: 56-63.   DOI
35 Kumar CG. 2002. Purification and characterization of a thermostable alkaline protease from alkalophilic Bacillus pumilus. Lett. Appl. Microbiol. 34: 13-17.   DOI
36 Kamekura M, Seno Y. 1990. A halophilic extracellular protease from a halophilic archaebacterium strain 172 P1. Biochem. Cell Biol. 68: 352-359.   DOI
37 Kembhavi AA, Kulkarni A, Pant A. 1993. Salt-tolerant and thermostable alkaline protease from Bacillus subtilis NCIM No. 64. Appl. Biochem. Biotechnol. 38: 83-92.   DOI
38 Konig H, Stetter KO. 1989. Archaeobacteria, in Bergey's Manual of Systematic Bacteriology, pp. 2171-2253. Vol. 3, J.T. Staley MP, Bryant N Pfennig, and J.G. Holt, Editors. 1989, Williams and Wilkens, Baltimore.
39 Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.   DOI
40 Lanyi JK. 1974. Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol. Rev. 38: 272-290.   DOI
41 Hu L, Pan H, Xue Y, Ventosa A, Cowan DA, Jones BE, et al. 2008. Halorubrum luteum sp. nov., isolated from Lake Chagannor, Inner Mongolia, China. Int. Syst. Evol. Microbiol. 58: 1705-1708.   DOI
42 Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275.   DOI
43 Palsaniya P, Mishra R, Beejawat N, Sethi S, Gupta BL. 2012. Optimization of alkaline protease production from bacteria isolated from soil. J. Microbiol. Biotechnol. Res. 2: 858-865.
44 Patel S, Saraf M. 2015. Perspectives and application of halophilic enzymes. pp 403-419. In Maheshwari, D.K., Saraf, M. (Eds.), Halophiles: Biodiversity and Sustainable Exploitation. Springer International Publishing, Cham.
45 Madern D, Ebel C, Zaccai G. 2000. Halophilic adaptation of enzymes. Extremophiles 4: 91-98.   DOI