Browse > Article
http://dx.doi.org/10.7317/pk.2015.39.2.225

Synthesis, Characterization, Thermal Stability and Conductivity of New Schiff Base Polymer Containing Sulfur and Oxygen Bridges  

Culhaoglu, Suleyman (Canakkale Onsekiz Mart University, Faculty of Science and Arts, Department of Chemistry, Polymer Synthesis and Analysis Lab.)
Kaya, Ismet (Canakkale Onsekiz Mart University, Faculty of Science and Arts, Department of Chemistry, Polymer Synthesis and Analysis Lab.)
Publication Information
Polymer(Korea) / v.39, no.2, 2015 , pp. 225-234 More about this Journal
Abstract
In this study, we proposed to synthesize thermally stable, soluble and conjugated Schiff base polymer (SbP). For this reason, a specific molecule namely 4,4'-thiodiphenol which has sulfur and oxygen bridge in its structure was used to synthesize bi-functional monomers. Bi-functional amino and carbonyl monomers namely 4,4'-[thio-bis(4,1-phenyleneoxy)] dianiline (DIA) and 4,4'-[thiobis(4,1-phenyleneoxy)]dibenzaldehyde (DIB) were prepared from the elimination reaction of 4,4'-thiodiphenol with 4-iodonitrobenzene and 4-iodobenzaldehyde, respectively. The structures of products were confirmed by elemental analysis, FTIR, $^1H$ NMR and $^{13}C$ NMR techniques. The molecular weight distribution parameters of SbP were determined by size exclusion chromatography (SEC). The synthesized SbP was characterized by solubility tests, TG-DTA and DSC. Also, conductivity values of SbP and SbP-iodine complex were determined from their solid conductivity measurements. The conductivity measurements of doped and undoped SbP were carried out by Keithley 2400 electrometer at room temperature and atmospheric pressure, which were calculated via four-point probe technique. When iodine was used as a doping agent, the conductivity of SbP was observed to be increased. Optical band gap ($E_g$) of SbP was also calculated by using UV-Vis spectroscopy. It should be stressed that SbP was a semiconductor which had a potential in electronic and optoelectronic applications, with fairly low band gap. SbP was found to be thermally stable up to $300^{\circ}C$. The char of SbP was observed 29.86% at $1000^{\circ}C$.
Keywords
conjugated schiff base polymer; polyazomethine; polyimine; thermal analysis; conductivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Adams, R. E. Bullock, and W. C. Wilson, J. Am. Chem. Soc., 45, 521 (1923).   DOI
2 S. K. Menon, S. K. Jogani, and Y. K. Agrawal, Rev. Anal. Chem., 19, 361 (2000).
3 M. Grigoras, O. Catanescu, and C. I. Simionescu, Revue Roumaine de Chimie, 46, 927 (2001).
4 C. Simionescu and D. Filip, Materiale Plastice, 37, 42 (2000).
5 P. K. Dutta, P. Jain, P. Sen, R. Trivedi, P. K. Sen, and J. Dutta, Eur. Polym. J., 39, 1007 (2003).   DOI   ScienceOn
6 Kaya and M. Gul, Polymer(Korea), 32, 295 (2008).
7 P. Kannan, S. Raja, and P. Sakthivel, Polymer, 45, 7895 (2004).   DOI   ScienceOn
8 J. M. Adell, M. P. Alonso, J. Barbera, L. Oriol, M. Pinol, and J. L. Serrano, Polymer, 44, 7829 (2003).   DOI   ScienceOn
9 M. Grigoras and N. C. Antonoaia, Eur. Polym. J., 41, 1079 (2005).   DOI   ScienceOn
10 D. Nepal, S. Samal, and K. E. Geckeler, Macromolecules, 36, 3800 (2003).   DOI   ScienceOn
11 D. Ribera, A. Mantecon, and J. Serra, J. Polymer Sci., Part A: Polym. Chem., 40, 4344 (2002).   DOI
12 S. H. Jung, T. W. Lee, Y. C. Kim, D. H. Suh, and H. N. Cho, Opt. Mater., 21, 169 (2002).
13 E. J. Choi, J. C. Ahn, L. C. Chien, C. K. Lee, W. C. Zin, D. C. Kim, and S. T. Shin, Macromolecules, 37, 71 (2004).   DOI   ScienceOn
14 L. Marin, V. Cozan, M. Bruma, and V. C. Grigoras, Eur. Polym. J., 42, 1173 (2006).   DOI   ScienceOn
15 H. Tanaka, Y. Shibahara, T. Sato, and T. Ota, Eur. Polym. J., 29, 1525 (1993).   DOI   ScienceOn
16 S. J. Sun, T. C. Chang, and C. H. Li, Eur. Polym. J., 29, 951 (1993).   DOI   ScienceOn
17 C. H. Li and T. C. Chang, J. Polym. Sci., Part A: Polym. Chem., 29, 361 (1991).   DOI
18 H. C. Kim, J. S. Kim, K. S. Kim, H. K. Park, S. Baek, and M. Ree, J. Polym. Sci., Part A: Polym. Chem., 42, 825 (2004).   DOI
19 L. Marin, V. Cozan, and M. Bruma, Polym. Adv. Technol., 17, 654 (2006).
20 U. Shukla, K. V. Rao, and A. K. Rakshit, J. Appl. Polym. Sci., 88, 153 (2003).   DOI   ScienceOn
21 A. Iwan and D. Sek, Prog. Polym. Sci., 33, 289 (2008).   DOI   ScienceOn
22 C. Hamcium, E. Hamcium, I. A. Ronova, and M. Bruma, High Perform. Polym., 9, 177 (1997).   DOI   ScienceOn
23 M. Bruma, B. Schulz, T. Topnick, R. Dietel, B. Stiller, F. Mercer, and V. N. Reddy, High Perform. Polym., 10, 207 (1998).   DOI   ScienceOn
24 M. Higuchi, S. Shiki, K. Ariga, and K. Yamamoto, J. Am. Chem. Soc., 123, 4414 (2001).   DOI   ScienceOn
25 K. Yamamoto, M. Higuchi, S. Shiki, M. Tsuruta, and H. Chiba, Nature, 415, 509 (2002).   DOI   ScienceOn
26 E. Stochmal-Pomarzanska, S. Quillard, M. Hasik, W. Turek, A. Pron, M. Lapkowski, and S. Lefrant, Synth. Met., 84, 427 (1997).   DOI   ScienceOn
27 W. Luzny, E. Stochmal-Pomarzanska, and A. Pron, Synth. Met., 101, 69 (1999).   DOI   ScienceOn
28 I. Kaya and S. Culhaoolu, Polimery-W, 54, 266 (2009).
29 F. R. Diaz, J. Moreno, L. H. Tagle, G. A. East, and D. Radic, Synth. Met., 100, 187 (1999).   DOI   ScienceOn
30 R. Cervini, X. C. Li, G. W. C. Spencer, A. B. Holmes, S. C. Moratti, and R. H. Friend, Synth. Met., 84, 359 (1997).   DOI   ScienceOn
31 K. Colladet, M. Nicolas, L. Goris, L. Lutsen, and D. Vanderzande, Thin Solid Films, 451, 7 (2004).
32 A. G. El-Shekeil, M. A. Khalid, and F. A. Al-Yusufy, Macromol. Chem. Phys., 202, 2971 (2001).   DOI
33 I. Kaya, A. Avci, and O. Gultekin, Chinese J. Polym. Sci., 30, 796 (2012).   DOI   ScienceOn
34 S. C. Ng, H. S. O. Chan, P. M. L. Wong, K. L. Tan, and B. T. G. Tan, Polymer, 39, 4963 (1998).   DOI   ScienceOn
35 A. G. El-Shekeil, H. A. Al-Saady, and F. A. Al-Yusufy, New Polym. Mater., 5, 131 (1998).
36 A. W. Jeevadason, K. K. Murugavel, and M. A. Neelakantan, Renew. Sust. Energ. Rev., 36, 220 (2014).   DOI   ScienceOn