• Title/Summary/Keyword: Six-DOF

Search Result 108, Processing Time 0.02 seconds

A Study on Position of Six-Degrees-of-Freedom of vibration Model and Orientation Decision by Adaptive Control Method (6자유도 진동모댈의 위치 및 자세결정을 위한 적응제어기법의 적용에 관한 연구)

  • Kim, J.Y.;Song, S.K.;Han, J.H.;Oh, Y.H.;Cho, S.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.94-101
    • /
    • 1994
  • About vibration model of Six-degrees-of-freedom(DOF), in mass load, examined results for knowing dynamic interference and response variation is as follows; In case of putting mass load upon the object, experimented results on two-degrees-of-freedom of the translation-1 direction and the rotation-1 direction at open-loop-control system, about 0.19 arcsed in input of the translation-$0.1{\mu}m$ and $0.022{\mu}m$ on input of the rotation-0.5 arcsec, the justicse of motion equation is acknowledged as confirming the appearance of the interference-$0.022{\mu}m$. In establishing calculation of transformation matrix by using analogue circuit, as simulating results that used incomplete differentiation, interference is $1.7{\times}10^{-3}$ arcsec on input of the translation-$0.1{\mu}m$ and $1.4{\times}10^{4}{\mu}m$ on input of the rotation-0.5 arcsec in open-loop-control system. Also it is $4.2{\times}10^{-4}$ arcsec on input of the translation-$0.1{\mu}m$ and $5.6{\times}10^{-5}{\mu}m$ on input of the rotation-0.5 arcesc in closed-loop-control system. As closed-loop-control system is better than open-loop-control system, equivalent accordance is confirmed on original response. Finally, fundamental validity of this theory is acknowledged.

  • PDF

Development of hovering-type AUV test-bed 'OCTAGON' (호버링 타입 자율무인잠수정 'OCTAGON'의 테스트베드 개발)

  • Choi, Dong-Ho;Lee, Young-Jin;Hong, Sung-Min;Kim, Joon-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.516-526
    • /
    • 2016
  • This paper introduces a hovering-type autonomous underwater vehicle (AUV) developed for research and its fundamental motion performance results obtained by simulation and field test. The AUV can control its motion in four degrees of freedom (DOF) by means of its horizontal and vertical thrusters, and it is designed to provide a test-bed that facilitates ease of operation and experimentation. Prior to the field tests, six DOF equations of motion are developed, and a simulation program is constructed using MATLAB and Simulink to verify the essential motion performance of the designed vehicle. Furthermore, a proportional-integral-derivative (PID) controller and fuzzy PID controller are designed, and their performances are verified through a simulation. Field tests are performed to verify the motion performance of the AUV; way-point tracking is executed by the PID and fuzzy PID controllers. The results confirmed appropriate control performance under current disturbances.

Intelligent Tuning of the Two Degrees-of-Freedom Proportional-Integral-Derivative Controller On the Distributed Control System for Steam Temperature Control of Thermal Power Plant

  • Dong Hwa Kim;Won Pyo Hong;Seung Hack Lee
    • KIEE International Transaction on Systems and Control
    • /
    • v.2D no.2
    • /
    • pp.78-91
    • /
    • 2002
  • In the thermal power plant, there are six manipulated variables: main steam flow, feedwater flow, fuel flow, air flow, spray flow, and gas recirculation flow. There are five controlled variables: generator output, main steam pressure, main steam temperature, exhaust gas density, and reheater steam temperature. Therefore, the thermal power plant control system is a multinput and output system. In the control system, the main steam temperature is typically regulated by the fuel flow rate and the spray flow rate, and the reheater steam temperature is regulated by the gas recirculation flow rate. However, strict control of the steam temperature must be maintained to avoid thermal stress. Maintaining the steam temperature can be difficult due to heating value variation to the fuel source, time delay changes in the main steam temperature versus changes in fuel flow rate, difficulty of control of the main steam temperature control and the reheater steam temperature control system owing to the dynamic response characteristics of changes in steam temperature and the reheater steam temperature, and the fluctuation of inner fluid water and steam flow rates during the load-following operation. Up to the present time, the Proportional-Integral-Derivative Controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error. This paper focuses on the characteristic comparison of the PID controller and the modified 2-DOF PID Controller (Two-Degrees-Freedom Proportional-Integral-Derivative) on the DCS (Distributed Control System). The method is to design an optimal controller that can be operated on the thermal generating plant in Seoul, Korea. The modified 2-DOF PID controller is designed to enable parameters to fit into the thermal plant during disturbances. To attain an optimal control method, transfer function and operating data from start-up, running, and stop procedures of the thermal plant have been acquired. Through this research, the stable range of a 2-DOF parameter for only this system could be found for the start-up procedure and this parameter could be used for the tuning problem. Also, this paper addressed whether an intelligent tuning method based on immune network algorithms can be used effectively in tuning these controllers.

  • PDF

A Novel Kinematic Design of a Knee Orthosis to Allow Independent Actuations During Swing and Stance Phases (회전기 및 착지기 분리 구동을 가능케 하는 새로운 무릎 보장구의 기구부 설계)

  • Pyo, Sang-Hun;Kim, Gab-Soon;Yoon, Jung-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.814-823
    • /
    • 2011
  • Nowadays many neurological diseases such as stroke and Parkinson diseases are continually increasing. Orthotic devices as well as exoskeletons have been widely developed for supporting movement assistance and therapy of patients. Robotic knee orthosis can compensate stiff-knee gait of the paralyzed limb and can provide patients consistent assistance at wearable environments. With keeping a robotic orthosis wearable, however, it is not easy to develop a compact and safe actuator with fast rotation and high torque for consistent supports of patients during walking. In this paper, we propose a novel kinematic model for a robotic knee orthosis to drive a knee joint with independent actuation during swing and stance phases, which can allow an actuator with fast rotation to control swing motions and an actuator with high torque to control stance motions, respectively. The suggested kinematic model is composed of a hamstring device with a slide-crank mechanism, a quadriceps device with five-bar/six-bar links, and a patella device for knee covering. The quadriceps device operates in five-bar links with 2-dof motions during swing phase and is changed to six-bar links during stance phase by the contact motion to the patella device. The hamstring device operates in a slider-crank mechanism for entire gait cycle. The kinematics and velocity/force relations are analyzed for the quadriceps and hamstring devices. Finally, the adequate actuators for the suggested kinematic model are designed based on normal gait requirements. The suggested kinematic model will allow a robotic knee orthosis to use compact and light actuators with full support during walking.

Design of a Digital Adaptive Flight Control Law for the ALFLEX

  • Ito, Hideya;Shimada, Yuzo;Uchiyama, Kenji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.519-524
    • /
    • 2003
  • In this report, a longitudinal adaptive flight control law is presented for the automatic landing system of a Japanese automatic landing flight experiment vehicle (ALFLEX). The longitudinal adaptive flight control law is designed to track an output of the vehicle to a guidance signal from the guidance portion of the automatic landing system. The proposed adaptive control law in the attitude control portion adjusts the controller gains continuously online as flight conditions change, in spite of the existence of unmodeled dynamics. The number of the controller gains to be adjusted is decreased to 1/2 from the previous studies. Computer simulation involving six-degree-of-freedom (DOF) nonlinear flight dynamics is performed to examine the effectiveness of the proposed adaptive control law. In order to verify the influence of the dispersion of the initial conditions, the Monte Carlo simulation is also applied. The initial conditions are more widely dispersed than the previous studies. As a result, except under the unsuitable initial conditions, the ALFLEX successfully landed on the runway.

  • PDF

Control Effectiveness Analysis of the hawkmoth Manduca sexta: a Multibody Dynamics Approach

  • Kim, Joong-Kwan;Han, Jae-Hung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.152-161
    • /
    • 2013
  • This paper presents a control effectiveness analysis of the hawkmoth Manduca sexta. A multibody dynamic model of the insect that considers the time-varying inertia of two flapping wings is established, based on measurement data from the real hawkmoth. A six-degree-of-freedom (6-DOF) multibody flight dynamics simulation environment is used to analyze the effectiveness of the control variables defined in a wing kinematics function. The aerodynamics from complex wing flapping motions is estimated by a blade element approach, including translational and rotational force coefficients derived from relevant experimental studies. Control characteristics of flight dynamics with respect to the changes of three angular degrees of freedom (stroke positional, feathering, and deviation angle) of the wing kinematics are investigated. Results show that the symmetric (asymmetric) wing kinematics change of each wing only affects the longitudinal (lateral) flight forces and moments, which implies that the longitudinal and lateral flight controls are decoupled. However, there are coupling effects within each plane of motion. In the longitudinal plane, pitch and forward/backward motion controls are coupled; in the lateral plane, roll and side-translation motion controls are coupled.

An Experimental Study on the Motion of the Floater Moored near Port in Waves Generated by a Ship

  • Nguyen, Thi Thanh Diep;Nguyen, Van Minh;Yoon, Hyeon Kyu;Kim, Young Hun
    • Journal of Navigation and Port Research
    • /
    • v.44 no.5
    • /
    • pp.363-374
    • /
    • 2020
  • In the past, various research on the effects of waves generated by ships has been investigated. The most noticeable effect of the waves generated by a passing ship is the increase of the hydrodynamic forces and the unwanted large motion of the moored ship and high mooring forces that occur. Thus, it is crucial to investigate the effect of the waves generated by the passing ship near port on the motion of the moored ship and the tension of the mooring lines. A model test was performed with virtual ship-generated waves in a square tank at CWNU (Changwon National University). The IMU (Inertial Measurement Unit) and Optical-based system were used to measure the 6DOF (Six Degrees of Freedom) motion of the moored floater. Additionally the tension of mooring lines were measured by the tension gauges. The effects of the wave direction and wave height generated by the virtual ship-generated waves on the motion of the moored floater were analyzed.

Study on Real-time Parallel Processing Simulator for Performance Analysis of Missiles (유도탄 성능분석을 위한 실시간 병렬처리 시뮬레이터 연구)

  • Kim Byeong-Moon;Jung Soon-Key
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.1
    • /
    • pp.84-91
    • /
    • 2005
  • In this paper, we describe the real-time parallel processing simulator developed for the use of performance analysis of rolling missiles. The real-time parallel processing simulator developed here consists of seeker emulator generating infrared image signal on aircraft, real-time computer, host computer, system unit, and actual equipments such as auto-pilot processor and seeker processor. Software is developed from mathematic models, 6 degree-of-freedom module, aerodynamic module which are resided in real-time computer, and graphic user interface program resided in host computer. The real-time computer consists of six TIC-40 processors connected in parallel. The seeker emulator is designed by using analog circuits coupled with mechanical equipments. The system unit provides interface function to match impedance between the components and processes very small electrical signals. Also real launch unit of missiles is interfaced to simulator through system unit. In order to apply the real-time parallel processing simulator to performance analysis equipment of rolling missiles it is essential to perform the performance verification test of simulator.

Design and Control of 6 D.O.F(Degrees of Freedom) Hovering AUV (6자유도 호버링 AUV의 설계 및 제어)

  • Jeong, Sang-Ki;Choi, Hyeung-Sik;Seo, Jung-Min;Tran, Ngoc Huy;Kim, Joon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.797-804
    • /
    • 2013
  • In this paper, a study of a new hovering six dof underwater robot with redundant horizontal thrusters, titled HAUV (hovering AUV), is presented. The results of study on the structure design, deployment of thrusters, and development of the developed control system of the AUV was presented. For the HAUV structure, a structure design and an analysis of the thrusting system was performed. For navigation, a sensor fusion board which can proceed various sensor signals to identify correct positions and speeds was developed and a total control system including EKF (Extended Kalman Filter) was designed. Rolling, pitching and depth control tests of the HAUV have been performed, and relatively small angle error and depth tracking error results were shown.

Formation Control of a Group of Underactuated Autonomous Underwater Vehicles (작동기수가 부족한 자율무인잠수정 그룹의 편대제어기법)

  • Li, Ji-Hong;Jun, Bong-Huan;Lee, Pan-Mook;Lim, Yong-Kon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1197-1204
    • /
    • 2008
  • This paper presents an asymptotic formation control scheme for a group of underactuated autonomous underwater vehicles (AUVs) where only three control inputs - surge force, yaw moment and pitch moment are available for each vehicle's six degree of freedom (DOF) underwater motion. Usually, the dynamics agents applied in most of the formation algorithms presented so far have been modeled as particle systems, which is a simple double-integrator system. Therefore, these algorithms cannot be directly applicable to the practical systems, especially to the underwater vehicles whose dynamics are highly nonlinear. Moreover, the vehicles considered in this paper are underactuated. The formation control is derived using general potential function method, and the corresponding potential function consists of two parts: interactions between vehicles and virtual-leader following. Proposed formation scheme guarantees asymptotic local stability of closed-loop system. Numerical simulations are carried out to illustrate the effectiveness of proposed formation scheme.