• Title/Summary/Keyword: Site Risk

Search Result 1,338, Processing Time 0.034 seconds

A Study on the Evaluation System Construction of Fall Risk Section to Fall (건설현장의 추락위험개소 산출System에 관한 연구-건축공사 중심으로)

  • Gang, Yong-Tak
    • Journal of the Korea Construction Safety Engineering Association
    • /
    • s.36
    • /
    • pp.73-81
    • /
    • 2006
  • Construction fall accidents have been investigated by many researchers. Construction workers are prone to fall when elevations of the construction site is high. And falls are the most fatal accidents: it can be directly linked to the death. Construction fall accidents might be reduced by predetermining several areas which are highly probable to have fall accidents and by controlling such areas until the completion of the building construction. In this paper, a fall prevention system is suggested which can identify the areas where the focus on fall protection is perhaps most needed from the process characteristics. Main methodologies for this research are summarized as follows: 1. A data base on elements and types of falls is constructed from the data analysis of last 10 years fall accidents history. 2. Guideline is derived by identifying the highly probable areas of fall accidents with respect to the specific construction process. 3. Developed system is verified by applying the system to construction sites. 4. Finally a fall prevention system is suggested by utilizing the fall accidents data.

  • PDF

Diffusion Range and Pool Formation in the Leakage of Liquid Hydrogen Storage Tank Using CFD Tools

  • Kim, Soohyeon;Lee, Minkyung;Kim, Junghwan;Lee, Jaehun
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.653-660
    • /
    • 2022
  • In liquid hydrogen storage tanks, tank damage or leakage in the surrounding pipes possess a major risk. Since these tanks store huge amounts of the fluid among all the liquid hydrogen process facilities, there is a high risk of leakage-related accidents. Therefore, in this study, we conducted a risk assessment of liquid hydrogen leakage for a grid-type liquid hydrogen storage tank (lattice-type pressure vessel (LPV): 18 m3) that overcame the low space efficiency of the existing pressure vessel shape. Through a commercially developed three-dimensional computational fluid dynamics program, the geometry of the site, where the liquid hydrogen storage tank will be installed, was obtained and simulations of the leakage scenarios for each situation were performed. From the computational flow analysis results, the pool formation behavior in the event of liquid hydrogen leakage was identified, and the resulting damage range was predicted.

A Study on Risk Communication and Risk Perception in Environmental Problems (환경문제의 위해도 인식과 위해도 홍보 프로그램의 효과분석 -라돈과 다이옥신을 중심으로-)

  • 김진용;신동천;박성은;임영욱;황만식
    • Environmental Analysis Health and Toxicology
    • /
    • v.17 no.4
    • /
    • pp.315-324
    • /
    • 2002
  • Risk communication can be defined as the exchange of information about the nature, magnitude, significance, acceptability, and management of risk. The effect of risk communication on the perception and knowledge towards risk of environmental pollutants and it's related factors were investigated in this study. To investigate perception and knowledge of students and teachers towards risk of environmental pollutants, we conducted the survey using self-administrated questionnaire. The subjects were 574 for the first survey and 465 for the seconds survey from May to June, 2000. The main methods of transmission used in this study- through video tape, visual materials, question and answer, and participation in measuring pollutants - were not a one - way street. But an interactive process where information and opinions were exchanged among individuals, groups, and institutions. Environmental pollutants measured with participation of study subjects was Radon in the class room. The concentration of Radon was measured using E -PERM Device by installing it at each site for about 5 days. Subjects showed much interest in environmental pollution. Also, more than 98% of total subjects were perceived as Korea is seriously contaminated at present. By risk communication activity, risk perception of all subjects about Radon was increased, on the other hand, risk perception of Dioxin was decreased except for elementary student. Moreover, knowledge of all subjects about environmental risk was significantly increased (p =0.0001) and effort of reducing environmental pollution was more increased (p<0.05). There is need to further develop, refine, and integrate these approaches environmental risk communication study, there is an even more pressing need to accelerate the diffusion of environmental risk communication practice into government and organizations.

Land Subsidence Survey and Analysis Using the Terrestrial LIDAR in Jakarta Bay, Indonesia

  • Park, Han-San
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.3
    • /
    • pp.233-240
    • /
    • 2013
  • Jakarta is the capital city of Indonesia which has problems of land subsidence with the rates of about 1 to 15 cm/year, up to 20-25 cm/year. The study has examined the land subsidence in Pantai Mutiara, Jakarta Bay which is a reclaimed area by using the Terrestrial LIDAR survey technique. The Terrestrial LIDAR survey results show that the survey site has mean elevation of 0.24 m with the highest elevation of 0.93 m and lowest - 0.35 m. Considering that AHHW (approximate highest high water) is 0.51 m, many areas of the survey site are lying below the AHHW. Pantai Mutiara area is showing various subsidence rates depending on sites although the site is relatively narrow and small (about 1 $km^2$). There is elevation differences of almost 1m within the site. In this study, key information including topography, dike height distribution, and future coastal flooding risk of the survey area was able to be provided by Terrestrial LIDAR survey conducted only once. Especially, as the 3D precision topography effectively conveys important messages relating to vulnerability of the site, policy makers and stakeholders can easily understand the situation of the site.

Development of Risk Evaluation Checklist for In-Situ Production of Precast Concrete Members (기성콘크리트 부재의 현장생산 리스크 평가를 위한 체크리스트 개발)

  • Lim, Jeeyoung;Jeong, Hee Woong;Kim, Dae Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.5
    • /
    • pp.445-457
    • /
    • 2021
  • In previous studies, it was confirmed that through the in-situ production of precast concrete members, costs could be reduced by 14.5-39.4% compared to in-plant production. In particular, it was confirmed that the factory owner did not make a contract if it did not earn more than 20% of the production cost. If precast concrete members are produced in-situ under the same conditions, the quality equivalent to that of factory production can be secured. As it is advantageous in terms of cost and quality, precast concrete members must be produced in-situ. However, it is difficult to produce all quantities in-situ due to time and various other constraints. This is because in-situ production is avoided due to anticipated risks during the project management process. However, if the risk factors are analyzed before performing in-situ production of precast concrete members, it will increase the opportunity for in-situ production. Therefore, this study develops a checklist for evaluating the risk of in-situ production of precast concrete members. By applying the checklist to one case site, it was verified that risk factors can be evaluated easily and quickly. As a result, it was analyzed that sites with a high building coverage ratio are classified as high-risk sites because it is difficult to secure usable area for production and storage. The developed checklist efficiently evaluates the risk factors of in-site production, and makes it possible for the operator to determine the risk factors, which can change frequently during project execution, and respond according to the situation.

Comparison of Heavy Metal Pollutant Exposure and Risk Assessments in an Abandoned Mine Site (폐광산 주변 토양 중금속 오염노출농도 우려기준과 위해성 비교 연구)

  • Choi, Jinwon;Yoo, Keunje;Koo, Myungseo;Park, Joon-Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4B
    • /
    • pp.261-266
    • /
    • 2012
  • In this study, soil environmental impact assessment using risk-based approach was compared with that using concentration-based approach. For this, heavy metal contaminant exposure was characterized in an abandoned mine area. According to the estimated carcinogenic and non-carcinogenic risks, soil ingestion was identified as the most dominant exposure pathway. When contaminant concentrations exceeded the Korean Soil Contamination Warning Standards, their corresponding risk values also exceeded the Total Soil Risk Standard. Even the cases of satisfying the Korean Soil Contamination Warning Standards mostly showed higher risk levels than the Total Soil Risk Standard, re-confirming a more sensitivity of the risk-based assessment than concentration-based assessment. However, the in-depth analysis of the estimated non-carcinogenic risk values revealed a few cases for soil contact pathway showing contaminant concentrations higher than the Korean Soil Contamination Warning Standards although their non-carcinogenic risk values satisfied the level of Hazard Index Standard. The findings from this study support a necessity of shifting policy paradigm from concentration-based approach into risk-based approach for reliable risk assessment in abandoned mine areas, and also suggest a necessity of further fundamental studies regarding risk factors and standards.

Increased Wall Enhancement Extent Representing Higher Rupture Risk of Unruptured Intracranial Aneurysms

  • Jiang, Yeqing;Xu, Feng;Huang, Lei;Lu, Gang;Ge, Liang;Wan, Hailin;Geng, Daoying;Zhang, Xiaolong
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.2
    • /
    • pp.189-197
    • /
    • 2021
  • Objective : This study aims to investigate the relationship between aneurysm wall enhancement and clinical rupture risks based on the magnetic resonance vessel wall imaging (MR-VWI) quantitative methods. Methods : One hundred and eight patients with 127 unruptured aneurysms were prospectively enrolled from Feburary 2016 to October 2017. Aneurysms were divided into high risk (≥10) and intermediate-low risk group (<10) according to the PHASES (Population, Hypertension, Age, Size of aneurysm, Earlier SAH history from another aneurysm, Site of aneurysm) scores. Clinical risk factors, aneurysm morphology, and wall enhancement index (WEI) calculated using 3D MR-VWI were analyzed and compared. Results : In comparison of high-risk and intermediated-low risk groups, univariate analysis showed that neck width (4.5±3.3 mm vs. 3.4±1.7 mm, p=0.002), the presence of wall enhancement (100.0% vs. 62.9%, p<0.001), and WEI (1.6±0.6 vs. 0.8±0.8, p<0.001) were significantly associated with high rupture risk. Multivariate regression analysis revealed that WEI was the most important factor in predicting high rupture risk (odds ratio, 2.6; 95% confidence interval, 1.4-4.9; p=0.002). The receiver operating characteristic (ROC) curve analysis can efficiently differentiate higher risk aneurysms (area under the curve, 0.780; p<0.001) which have a reliable WEI cutoff value (1.04; sensitivity, 0.833; specificity, 0.67) predictive of high rupture risk. Conclusion : Aneurysms with higher rupture risk based on PHASES score demonstrate increased neck width, wall enhancement, and the enhancement intensity. Higher WEI in unruptured aneurysms has a predictive value for increased rupture risk.

Applying Fire Risk Analysis to Develop Fire-safe Modular Walls: Guidance to Material Selection, Design Approach and Construction Method

  • Lim, Seokho;Chung, Joonsoo;Kim, Mihyun Esther
    • Architectural research
    • /
    • v.24 no.2
    • /
    • pp.21-27
    • /
    • 2022
  • For the past decade, South Korea had experienced catastrophic building fires, which resulted in consider-ably high number of casualties. This motivated research to develop fire-safe wall assemblies. In this study Fire Risk Analysis (FRA) is conducted as part of the project designing phase to ensure fire safety of the final product. Traditional approach was to consider fire performance at the end of the designing stage, when PASS/FAIL fire test results are required to be submitted to the Authority Having Jurisdiction (AHJ). By applying a fire risk analysis to guide the designing phase, overall fire safety of a wall assembly can be achieved more systematically as conducting FRA allows designers to clearly identify elements that are more vulnerable to fire and simply replace them with other practical options. Severity of fire risk is determined by considering the fire hazards of a wall assembly such as the exterior layer, insulation, vertical connectivity, and external ignition sources (e.g., photovoltaic panels). Frequency of fire risk is assessed based on the factors affecting fire likelihood, which are air cavity and fire-stopping applied in the design, and random design changes occurring during on-site construction. Fire risk matrix is proposed based on these fire risk factors and efforts to reduce the fire risk level associated with the wall assembly are given by systematically assessing the fire risk factors identified from fire risk analysis. Current study demonstrates how fire risk analysis can be applied to develop fire-safe walls by reducing the relevant fire risks- both severity and frequency.

Construction of a Preliminary Conceptual Site Model Based on a Site Investigation Report for Area of Concerns about Groundwater Contamination (지하수 오염우려지역 실태조사 보고서 기반의 사전 부지개념모델 구축)

  • Kim, Juhee;Bae, Min Seo;Kwon, Man Jae;Jo, Ho Young;Lee, Soonjae
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.spc
    • /
    • pp.64-74
    • /
    • 2022
  • The conceptual site model (CSM) is used as a key tool to support decision making in risk based management of contaminated sites. In this work, CSM was applied in Jeonju Industrial Complex where site investigation for groundwater contamination was conducted. Site background information including facility types, physical conditions, contaminants spill history, receptor exposure, and ecological information were collected and cross-checked with tabulated checklist necessary for CSM application. The CSM for contaminants migration utilized DNAPL transport model and narrative CSMs were constructed for source to receptor pathway, ecological exposure route, and contaminants fate and transport in the form of a diagram or flowchart. The component and uncertainty of preliminary CSM were reviewed using the data gap analysis while taking into account the purpose of the survey and the site management stage at the time of the survey. Through this approach, the potential utility of CSM was demonstrated in the site management process, such as assessing site conditions and planning follow-up survey work.

Determination of seismic hazard and soil response of a critical region in Turkey considering far-field and near-field earthquake effect

  • Sonmezer, Yetis Bulent;Celiker, Murat
    • Geomechanics and Engineering
    • /
    • v.20 no.2
    • /
    • pp.131-146
    • /
    • 2020
  • Evaluation of earthquake impacts in settlements with a high risk of earthquake occurrence is important for the determination of site-specific dynamic soil parameters and earthquake-resistant structural planning. In this study, dynamic soil properties of Karliova (Bingol) city center, located near to the intersection point of the North Anatolian Fault Zone and the East Anatolian Fault Zone and therefore having a high earthquake risk, were investigated by one-dimensional equivalent linear site response analysis. From ground response analyses, peak ground acceleration, predominant site period, 0.2-sec and 1-sec spectral accelerations and soil amplification maps of the study area were obtained for both near-field and far-field earthquake effects. The average acceleration spectrum obtained from analysis, for a near-field earthquake scenario, was found to exceed the design spectra of the Turkish Earthquake Code and Eurocode 8. Yet, the average acceleration spectrum was found to remain below the respective design spectra of the two codes for the far-field earthquake scenario. According to both near- and far-field earthquake scenarios in the study area, the low-rise buildings with low modal vibration durations are expected to be exposed to high spectral acceleration values and high-rise buildings with high modal vibration durations will be exposed to lower spectral accelerations. While high amplification ratios are observed in the north of the study area for the near-distance earthquake scenario, high amplification ratios are observed in the south of the study area for the long-distance earthquake scenario.