• Title/Summary/Keyword: Site/soil characteristics

Search Result 709, Processing Time 0.028 seconds

Evaluation of Watershed Stability by the Forest Environmental and Stream Morphological Factors (산림환경 및 하천형태인자에 의한 유역안정성 평가)

  • Jung, Won-Ok;Ma, Ho-Seop
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.4
    • /
    • pp.1-11
    • /
    • 2001
  • This study was carried out to analyze the characteristics of forest environmental and stream morphological factors by using the quantification theory(I) for evaluation of the watershed stability. Present annual mean sediment yield of erosion control dams were investigated in 167 sites of erosion control dam constructed during 1986 to 1999 in Gyeongbuk. The results obtained from this study were summarized as follows; According to the coefficients of partial correlation, each factor affecting to sediment was shown in order of gravel contents, number of first streams order, number of total streams, length of total streams, forest type, length of main stream, parent rock, stand age, soil texture, stream order, slope gradient, soil depth and aspect. Descriptions of class I were as follow; Igneous rock of parent rock, hardwood stands of forest type, less than 20 year of stand age, less than 30cm of soil depth, sandy clay loam of soil texture, more than 41% of gravel contents, south~east of aspect, 2,501~3,500m of length of main stream, 21~25 of number of total streams, 5,501~10,000m of length of total streams, 3 or more than 4 of stream order, more than 16 of number of first stream orders and more than $31^{\circ}$ of slope gradient. Descriptions of class II were as follow; Metamorphic rock of parent rock, coniferous stands of forest type, more than 25 year of stand age, 31~40cm of soil depth, silt loam of soil texture, 11~20% of gravel contents, north~west of aspect, 2,501~3,500m of length of main stream, 16~20 of number of total streams, 3,501~5,500m of length of total streams, 3 of stream order, 11~15 of number of first stream orders and more than $31^{\circ}$ of slope gradient. Descriptions of class III were as follow; Sedimentary rock of parent rock, mixed stands of forest type, more than 25 year of stand age, more than 51cm of soil depth, silty clay loam of soil texture, less than 10% of gravel contents, south~west of aspect, less than 500m of length of main stream, less than 5 of number of total streams, less than 1,000m of length of total streams, less than 1 of stream order, less than 2 of number of first stream orders and less than $25^{\circ}$ of slope gradient. The prediction method of suitable site for erosion control dam divided into class I, II, and III for the convenience of use. The score of class I evaluated as a very unstable area was more than 8.4494. A score of class II was 8.4493 to 6.0452, it was evaluated as a moderate stable area, and class III was less than 6.0541, it was evaluated as a very stable area.

  • PDF

Habitat Characteristics of Saussurea chabyoungsanica (자병취의 생육지 특성)

  • Oh, Young-Ju;Paik, Weon-Ki;Lee, Woo-Chul
    • The Korean Journal of Ecology
    • /
    • v.25 no.3 s.107
    • /
    • pp.145-152
    • /
    • 2002
  • Saussurea chabyoungsanica was recorded in new species by Lim Hyoung Tak in 1997. In order to understand the entity of new species, we investigated the new distribution sites, vegetation structure and soil environmental factors. Additionally discovered distribution sites of S. chabyoungsanica were Manduckbong, Mt. Sukbyoung, Mt. Duckhang, and Sukgaejae, which were located on ridge of the Taebaek Mountains. Those sites are typical limestone zones of Korea and among them Sukgaejae belongs to lower great limestone area and Manduckbong, Mt. Sukbyoung and Mt. Duckhang belong to upper great limestone area. According to the result of phytosociological study, plant communities of S. chabyoungsanica were classified by 1 Community group, 4 Communities and 2 Subcommunities; Carex humilis var. nana-Saussurea chabyoungsanica Community group in wide sense Quercus mongolica Community group, Lespedeza maximowiczii-Saussurea chabyounsanica Community, Galium kinuta-Saussurea chabyoungsanica Community, Salvia chanryonica-Saussurea chabyoungsanica Community, Zabelia coreana-Saussurea chabyoungsanica Community. Environmental factor analysis of habitat showed that the distribution site of S. chabyoungsanica was ridge of North aspect and displayed pH $7{\sim}8$ typical of limestone. Soil moisture content was high, whereas organic matter content was low. Considering its high occurrence in sites of $1{\sim}10cm$ in soil depth, and of $30{\sim}45%$ in relative light intensity, major distribution sites were outcrops and boundaries between shrubland and forest. After community division by vegetation structure in habitat of S. chabyoungsanica, we investigated characters of soil environment by community. As a result of PCA analysis of soil sample by community, it was possible to divide community by characters of soil environmental factor. The cumulative value of contribution rate represented in second dimension space was 73% and the major factors for that value were soil texture, organic matter content and field capacity.

Low Temperature Thermal Desorption (LTTD) Treatment of Contaminated Soil

  • Alistair Montgomery;Joo, Wan-Ho;Shin, Won-Sik
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.44-52
    • /
    • 2002
  • Low temperature thermal desorption (LTTD) has become one of the cornerstone technologies used for the treatment of contaminated soils and sediments in the United States. LTTD technology was first used in the mid-1980s for soil treatment on sites managed under the Comprehensive Environmental Respones, Compensation and Liability Act (CERCLA) or Superfund. Implementation was facilitated by CERCLA regulations that require only that spplicable regulations shall be met thus avoiding the need for protracted and expensive permit applications for thermal treatment equipment. The initial equipment designs used typically came from technology transfer sources. Asphalt manufacturing plants were converted to direct-fired LTTD systems, and conventional calciners were adapted for use as indirect-fired LTTD systems. Other innovative designs included hot sand recycle technology (initially developed for synfuels production from tar sand and oil shale), recycle sweep gas, travelling belts and batch-charged vacuum chambers, among others. These systems were used to treat soil contaminated with total petroleum hydrocarbons (TPH), polycyclic aromatic hydrocarbons (PAHs), pesticides, polychlorinated biphenyls (PCBs) and dioxin with varying degrees of success. Ultimately, performance and cost considerations established the suite of systems that are used for LTTD soil treatment applications today. This paper briefly reviews the develpoment of LTTD systems and summarizes the design, performance and cost characteristics of the equipment in use today. Designs reviewed include continuous feed direct-fired and indirect-fired equipment, batch feed systems and in-situ equipment. Performance is compared in terms of before-and-after contaminant levels in the soil and permissible emissions levels in the stack gas vented to the atmosphere. The review of air emissions standards includes a review of regulations in the U.S. and the European Union (EU). Key cost centers for the mobilization and operation of LTTD equipment are identified and compared for the different types of LTTD systems in use today. A work chart is provided for the selection of the optmum LTTD system for site-specific applications. LTTD technology continues to be a cornerstone technology for soil treatment in the U.S. and elsewhere. Examples of leading-edge LTTD technologies developed in the U.S. that are now being delivered locally in global projects are described.

  • PDF

Habitat Characteristics of Saussurea chabyoungsanica (자병취의 생육지 특성)

  • 백원기;오영주;이우철
    • The Korean Journal of Ecology
    • /
    • v.25 no.2
    • /
    • pp.75-82
    • /
    • 2002
  • Saussurea chabyoungsanica was recorded in new species by Lim Hyoung Tak in 1997. In order to understand the entity of new species, we investigated the new distribution sites, vegetation structure and soil environmental factors. Additionally discovered distribution sites of S. chabyoungsanica were Manduckbong, Mt. Sukbyoung, Mt. Duckhang, and Sukgaejae, which were located on ridge of the Taebaek mountains. Those sites are typical limestone zones of Korea and among them Sukgaejae belongs to lower great limestone area and Manduckbong, Mt. Sukbyoung and Mt. Duckhang belong to uper great limestone area. According to the result of phytosociological study, plant communities of S. chabyoungsanica were classified by 1 Community group, 4 Communities and 2 Subcommunities; Carex humilis var. nana - Saussurea chabyoungsanica Community group in wide sense Quercus mongolica Community group, Lespedeza maximowiczii- Saussurea chabyoungsanica Community, Galium kinuta - Saussurea chabyongsanica Community, Saliva chanryonica - Saussurea chabyoungsanica Community, Zabelia coreana - Saussurea chabyoungsanica Community. Environmental factor analysis of habitat showed that the distribution site of S. chabyoungsanica was ridge of North aspect and displayed pH 7∼8 typical of limestone. Soil moisture content was high, whereas organic matter content was low. Considering its high occurrence in sites of 1∼10cm in soil depth, and of 30∼45% in relative light intensity, major distribution sites were outcrops and boundaries between shrubland and forest. After community division by vegetation structure in habitat of S. chabyoungsanica, we investigated characters of soil environment by community. As a result of PCA analysis of soil sample by community, it was possible to divide community by characters of soil environmental factor. The cumulative value of contribution rate represented in second dimension space was 73% and the major factors for that value were soil texture, organic matter content and field capacity.

Slope Stability Analysis of Unsaturated Soil in Debris-Flow Occurrence Slopes (토석류 발생 사면의 불포화토 사면안정해석)

  • Kwak, Cheol-Soo;Park, Byung-Soo;Yoo, Nam-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.9
    • /
    • pp.23-30
    • /
    • 2012
  • This paper is research results of slope stability analysis associated with seepage infiltration for unsaturated soil in debris-flow occurrence slopes. Site investigations were carried out in two slopes, located at Inje in Kangwon province where debris flow occurred in 2006 and at Yangpyung in Kyeunggi province where it occurred in 2010. For unsaturated soil sampled at the zone of debris-flow initiation, soil water characteristic curves with tempe pressure cells and shear strength parameters with newly designed shear strength apparatus were obtained respectively. The commertially available software SEEP/W was used to analyze seepage infiltration in unsaturated soil, based on their properties obtained from test results and the actual rainfall data at the moment of debris flow occurrence, and slope stability analysis with the program of SLOPE/W, associated with results of seepage analysis, was performed to simulate slope failure. As results of this research, seepage infiltration to unsaturated soil due to intensive rainfall was found to cause increase of ground water table as well as degree of saturation. Through this research slope stability analysis for unsaturated soil, considering the actual rainfall characteristic, might be a reasonable method of investigating characteristics of debris flow behavior, in particular, the moment of debris flow occurrence.

Volcanic Origin Potential Acid Sulfate Soil Material : Hydrothermally Altered Pyrite Rich Andesite (열수변질 함황철석 안산암 기원의 잠재성 특이산성토 물질)

  • Kim, Jae Gon;Chon, Chul-Min;Yun, Eul-Soo;Zhang, Yong-Seon;Jung, Pil-Kyun;Jung, Yeun-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.5
    • /
    • pp.311-317
    • /
    • 2000
  • Acid sulfate soil and potential acid sulfate soil material are worldwide in distribution and are problematic in agriculture and environment due to their present and potential acidity developed by the oxidation of sulfides. Most of them are sedimentary origin and a few cases are reported as volcanic or metamorphic origin. We report a potential acid sulfate soil material originated from volcanic activity during Mesozoic. A profile of Bongsan series-weathered nonpyritic andesite-hydrothermally altered pyrite rich andesite was studied with field examination, chemistry, and mineralogy. Once, the pyrite rich andesite was exposed to atmosphere by excavation and leveling works for a residential area and the lay out site had subsequent acidification problem of soil and surface water. The parent material and soil profile of Bongsan series had no signs of presence of pyrite and acid sulfate weathering such as yellow mottles. However, the hydrothermally altered andesite substrata contained significant amount of pyrite showing characteristics of hydrothermal origin such as cubic and pyritohedron morphology and occurrence along cracks.

  • PDF

Firing Condition, Source Area and Quantitative Analysis of Plain Coarse Pottery from the Unjeonri Bronze Age Relic Site, Cheonan, Korea (천안 운전리 청동기 유적지에서 출토된 무문토기의 정량분석, 산지 및 소성조건)

  • Choi, Seok-Won;Lee, Chan-Hee;Oh, Kuy-Jin;Lee, Hyo-Min;Lee, Myeong-Seong
    • Korean Journal of Heritage: History & Science
    • /
    • v.36
    • /
    • pp.267-297
    • /
    • 2003
  • The plain coarse pottery from the Unjeonri Bronze Age relic sites in the Cheonan, Korea were studied on the basis of clay mineralogy, geochemistry and archaegeological interpretations. For the research, the potteries are utilized at the analysis for 6 pieces of plain coarse potteries. Color of the these potteries are mainly light brown, partly shows the yellowish brown to reddish brown. The interior, surface and inside of the pottery appear as different colors in any cases. Original source materials making the Unjeonri potteries are used of mainly sandy clay soil with extreme coarse grained irregularly quartz and feldspar. The magnetic susceptibility of the Unjeonri pottery range from 0.20 to 1.20. And the Unjeonri soil's magnetic susceptibility agree almost with 0.20 to 1.30. In the same magnetization of soil and pottery, the results revealed that the Unjeonri soil and low material of pottery are same produced by identical source materials. The Unjeonri potteries and soil are very similar patterns with all characteristics of soil mineralogy, geochemical evolution trend. The result seems to be same relationships between the behavior and enrichment patterns on the basis of a compatible and a incompatible elements. Consequently, the Unjeonri potteries suggest that made the soil to be distributed in the circumstance of the relic sites as the raw material are high in a greater part. In the Unjeonri soil, the kaolinite is common occurred minerals. However, in the Unjeonri pottery, the kaolinite was not detected in all broken pieces. The kaolinite was presumed to destroy crystal structure during the firing processes of over $550^{\circ}C$. The quartz is phase transition from ${\alpha}$-quartz to ${\beta}$-quartz at $573^{\circ}C$, but the Unjeonri pottery did not investigated any phase transition evidences of quartz. The chorite was detected within the mostly potteries and soils. As the results, the Unjeonri potteries can be interpreted by not experiencing a firing temperature over $800^{\circ}C$. The colloidal and cementing materials between the quartz and low materials during the heating did not exist in the internal part of the potteries. An any secondary compounds by heating does not appear within the crack to happen during the dry of the pottery. The hyphae group are kept as it is with the root tissue of an organic matters to live in the swampy land. In the syntheses of all results, the general firing condition to bake and make the Unjeonri pottery is presumed from $550^{\circ}C$ to $800^{\circ}C$. However, the firing condition making the Unjeonri pottery can be different firing temperature partially in one pottery. Even, the some part of the pottery does not take a direct influence on the fire.

Monitoring of Endocrine Disruptor-suspected Pesticide Residues in Greenhouse Soils and Evaluation of Their Leachability to Groundwater (시설재배 토양 중 내분비계장애 추정농약의 잔류 모니터링 및 지하수 용탈 가능성)

  • Noh, Hyun-Ho;Lee, Kwang-Hun;Lee, Jae-Yun;Park, Hyo-Kyung;Lee, Eun-Young;Hong, Su-Myung;Park, Young-Soon;Kyung, Kee-Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.4
    • /
    • pp.441-452
    • /
    • 2011
  • This study was carried out to survey the residual characteristics of endocrine disruptor (ED)-suspected pesticides in greenhouse soils and assess their leachabilites to groundwater. Greenhouse soils were collected from 40 sites of greenhouse in 2008 in Korea. Sixteen ED-suspected pesticides which had been using in Korea, such as alachlor, benomyl, carbaryl, cypermethrin, 2,4-D, dicofol, endosulfan, fenvalerate, malathion, mancozeb, metribuzin, metiram, methomyl, parathion, trifluralin, and vinclozolin, in the soils, were analyzed by chromatographic methods using GLC-ECD and HPLC-DAD/FLD. Limits of detection (LODs) of the test pesticides ranged from 0.0004 to 0.005 mg/kg. Recoveries of the target pesticides from soil ranged from 72.69 to 115.28%. Four pesticides including cypermethrin were detected in the range of from 0.001 to 2.019 mg/kg, representing that their detection rate from greenhouse soils was 37.5%. The highest detection rate was observed from endosulfan which was detected from 16 site soils of the total samples, indicating that endosulfan is persistent in soil because of its very low mobility and high adsorption characteristics in soil. Based on the groundwater ubiquity scores (GUSs) of the pesticides detected from greenhouse soils, most of them have little possibilities of groundwater contamination except the fungicide vinclozolin with some leaching potential because of high water solubility and very low soil adsorption property.

Health Risk Assessment for Residents after Exposure to Chemical Accidents: Formaldehyde (화학사고물질 노출에 따른 피해지역 주민 건강위해성평가: 폼알데하이드 사례를 중심으로)

  • Park, Sihyun;Cho, Yong-Sung;Lim, Huibeen;Park, Jihoon;Lee, Cheolmin;Hwang, Seung-Ryul;Lee, Chungsoo
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.2
    • /
    • pp.155-165
    • /
    • 2021
  • Objectives: Acute exposure to high concentrations of chemicals can occur when a chemical accident takes place. As such exposure can cause ongoing environmental pollution, such as in the soil and groundwater, there is a need for a tool that can assess health effects in the long term. The purpose of this study was assessing the health risks of residents living near a chemical accident site due to long-term exposure while considering the temporal concentration changes of the toxic chemicals leaked during the accident until their extinction in the environment using a multimedia environmental dynamics model. Methods: A health risk assessment was conducted on three cases of formaldehyde chemical accidents. In this study, health risk assessment was performed using a multimedia environmental dynamics model that considers the behavior of the atmosphere, soil, and water. In addition, the extinction period of formaldehyde in the environment was regarded as extinction in the environment when the concentration in the air and soil fell below the background concentration prior to the accident. The subjects of health risk assessment were classified into four groups according to age: 0-9 years old, 10-18 years old, 19-64 years old, and over 65 years old. Carcinogenic risk assessment by respiratory exposure and non-carcinogenic risk assessment by soil intake were conducted as well. Results: In the assessment of carcinogenic risk due to respiratory exposure, the excess carcinogenic risk did not exceed 1.0×10-6 in all three chemical accidents, so there was no health effect due to the formaldehyde chemical accident. As a result of the evaluation of non-carcinogenic risk due to soil intake, none of the three chemical accidents had a risk index of 1, so there was no health effect. For all three chemical accidents, the excess cancer risk and hazard index were the highest in the age group 0-9. Next, 10-18 years old, 65 years old or older, and 19-64 years old showed the highest risk. Conclusion: This study considers environmental changes after a chemical accident occurs and until the substance disappears from the environment. It also conducts a health risk assessment by reflecting the characteristics of the long-term persistence and concentration change over time. It is thought that it is of significance as a health risk assessment study reflecting the exposure characteristics of the accident substance for an actual chemical accident.

Three Dimensional Measurements of Pore Morphological and Hydraulic Properties (토양 공극 형태와 수문학적 특성에 대한 3 차원적 측정)

  • Chun, Hyen-Chung;Gimenez, Daniel;Yoon, Sung-Won;Heck, Richard;Elliot, Tom;Ziska, Laise;Geaorge, Kate;Sonn, Yeon-Kyu;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.415-423
    • /
    • 2010
  • Pore network models are useful tools to investigate soil pore geometry. These models provide quantitative information of pore geometry from 3D images. This study presents a pore network model to quantify pore structure and hydraulic characteristics. The objectives of this work were to apply the pore network model to characterize pore structure from large images to quantify pore structure, calculate water retention and hydraulic conductivity properties from a three dimensional soil image, and to combine measured hydraulic properties from experiments with calculated hydraulic properties from image. Soil samples were taken from a site located at the Baltimore science center, which is located inside of the city. Undisturbed columns were taken from the site and scanned with a computer tomographer at resolutions of 22 ${\mu}m$. Pore networks were extracted by medial-axis transformation and were used to measure pore geometry from one of the scanned samples. Water retention and unsaturated hydraulic conductivity values were calculated from the soil image. Properties of soil bulk density, water retention and unsaturated hydraulic conductivity were measured from three replicates of scanned soil samples. 3D image analysis provided accurate detailed pore properties such as individual pore volumes, pore length, and tortuosity of all pores. These data made possible to calculate accurate estimations of water retention and hydraulic conductivity. Combination of the calculated and measured hydraulic properties gave more accurate information on pore sizes over wider range than measured or calculated data alone. We could conclude that the hydraulic property computed from soil images and laboratory measurements can describe a full structure of intra- and inter-aggregate pores in soil.