• Title/Summary/Keyword: Sinusoidal vibration

검색결과 267건 처리시간 0.019초

조향휠 진동의 안락성 평가를 위한 주파수 가중치 곡선 결정 (Determination of the Frequency Weighting Curves for the Estimation of Discomfort by the Steering Wheel Vibration)

  • 홍석인;장한기;김승한
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.1048-1052
    • /
    • 2003
  • This study aims to derive frequency weighting curves for the estimation of driver's discomfort by steering wheel vibration in the vertical and rotational direction with respect to a steering column. Subjective tests for the determination of equal sensation curves, inverse of frequency weighting curves, for the two kinds of vibrations were performed using the sinusoidal signals with reference amplitudes from 0.2m/s$^2$ to 0.4 m/s$^2$ in the frequency range from 5㎐ to 100㎐. Twelve subjects joined at the tests, and median values of the twelve judgments were used to determine the frequency weighting curves. Second experiment was followed to determine relative magnitude between the two frequency weighting curves by direct comparison of discomfort due to the two kinds of vibrations at 50㎐, which showed discomfort by the rotational vibration was 1.5 times of that by the vertical vibration.

  • PDF

Solid-state drive 강제진동시 dummy solder ball 효과에 의한 피로수명 예측 (Fatigue Life Estimation of Solid-state Drive due to the Effect of Dummy Solder Ball under Forced Vibration)

  • 이주엽;장건희;장진우
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.978-983
    • /
    • 2014
  • This research proposes a method to estimate the fatigue life of solid-state drive(SSD) due to the effect of dummy solder ball under forced vibration. Mechanical jig is developed to describe the SSD in laptop computer. The jig with SSD is mounted on a shaker, and excited by a sinusoidal sweep vibration within the narrow frequency band around the first resonant frequency until the SSD fails. A finite element model of SSD is also developed to simulate the forced vibration. It shows that the solder joints at the corners of controller package are most vulnerable components and that placing dummy solder balls at those area is effective method to increase fatigue life of SSD.

  • PDF

Damping and vibration response of viscoelastic smart sandwich plate reinforced with non-uniform Graphene platelet with magnetorheological fluid core

  • Eyvazian, Arameh;Hamouda, Abdel Magid;Tarlochan, Faris;Mohsenizadeh, Saeid;Dastjerdi, Ali Ahmadi
    • Steel and Composite Structures
    • /
    • 제33권6호
    • /
    • pp.891-906
    • /
    • 2019
  • This study considers the instability behavior of sandwich plates considering magnetorheological (MR) fluid core and piezoelectric reinforced facesheets. As facesheets at the top and bottom of structure have piezoelectric properties they are subjected to 3D electric field therefore they can be used as actuator and sensor, respectively and in order to control the vibration responses and loss factor of the structure a proportional-derivative (PD) controller is applied. Furthermore, Halpin-Tsai model is used to determine the material properties of facesheets which are reinforced by graphene platelets (GPLs). Moreover, because the core has magnetic property, it is exposed to magnetic field. In addition, Kelvin-Voigt theory is applied to calculate the structural damping of the piezoelectric layers. In order to consider environmental forces applied to structure, the visco-Pasternak model is assumed. In order to consider the mechanical behavior of structure, sinusoidal shear deformation theory (SSDT) is assumed and Hamilton's principle according to piezoelasticity theory is employed to calculate motion equations and these equations are solved based on differential cubature method (DCM) to obtain the vibration and modal loss factor of the structure subsequently. The effect of different factors such as GPLs distribution, dimensions of structure, electro-magnetic field, damping of structure, viscoelastic environment and boundary conditions of the structure on the vibration and loss factor of the system are considered. In order to indicate the accuracy of the obtained results, the results are validated with other published work. It is concluded from results that exposing magnetic field to the MR fluid core has positive effect on the behavior of the system.

미세 초음파 타원궤적 진동절삭 (I) 미세 초음파 가공을 위한 타원 절삭경로 생성 (Micro Ultrasonic Elliptical Vibration Cutting (I) The Generation of a Elliptical Vibration Cutting Motion for Micro Ultrasonic Machining)

  • 노병국;김기대
    • 한국정밀공학회지
    • /
    • 제22권12호
    • /
    • pp.190-197
    • /
    • 2005
  • For precise micro-grooving and surface machining, a mechanism for creating elliptical vibration cutting (EVC) motion is proposed which uses two parallel piezoelectric actuators. And based on its kinematical analysis, variations of EVC path are investigated as a function of dimensional changes in the mechanism, phase difference and amplitude of excitation sinusoidal voltages. Using the proposed PZT mechanism, various types of two dimensional EVC paths including one dimensional vibration cutting path along the cutting direction and thrust direction can be easily obtained by changing the phase lag, the amplitude of the piezoelectric actuators, and the dimension of the mechanism.

미세 초음파 타원궤적 진동절삭 (II) 타원진동 절삭운동을 이용한 미세 홈 초음파 가공 (Micro Ultrasonic Elliptical Vibration Cutting (II) Ultrasonic Micro V-grooving Using Elliptical Vibration Cutting)

  • 김기대;노병국;황경식
    • 한국정밀공학회지
    • /
    • 제22권12호
    • /
    • pp.198-204
    • /
    • 2005
  • For precise micro V-grooving, ultrasonic elliptical vibration cutting (UEVC) is proposed using two parallel piezoelectric actuators, which are energized by sinusoidal voltages with a phase difference of 90 degrees. Experimental setup is composed of stacked PZT actuators, a single crystal diamond cutting tool, and a precision motorized xyz stage. It is found that the chip formed in the process of UEVC is discontinuous because of the periodic contacts and non-contacts occurring between the tool and workpiece. It is experimentally observed that the cutting force in the process of UEVC significantly reduces compared to the ordinary non-vibration cutting. In addition, the creation of burr during UEVC is significantly suppressed, which is attributable to the decrease in the specific cutting energy.

다채널 제어알고리듬을 이용한 음향 가진된 밀폐계 평판의 능동진동제어 (Active Vibration Control of Acoustically Loaded Flexible Plate Enclosure Using Multi-Channel Control Algorithm)

  • 홍진석;박수홍;김흥섭;오재응;정진태
    • 대한기계학회논문집A
    • /
    • 제24권6호
    • /
    • pp.1390-1397
    • /
    • 2000
  • This paper presents the multi-channel active vibration control of a flexible plate of the acoustically loaded enclosure. The flexible plate was excited acoustically with sinusoidal and white noise input. The control was performed by two piezo ceramic actuators and two accelerometers. The experimental results were compared with the single channel control results. In the case of white noise input, 20 dB of vibration reduction was achieved below 300Hz frequency range. The experimental results demonstrate that multi-channel filtered-x LMS algorithm is effective than single-channel filtered-x LMS algorithm in active vibration control of plate.

구름요소의 Waviness 를 고려한 볼베어링 해석 이론 (Analytical Theory of Ball Bearing Considering Waviness of Rolling Elements)

  • 정성원;장건희
    • 한국소음진동공학회논문집
    • /
    • 제11권7호
    • /
    • pp.275-286
    • /
    • 2001
  • The research presents an analytical theory to calculate the characteristics of the bal bearing with waviness in its rolling elements considering the centrifugal force and gyroscopic moment of bal. The effects of centrifugal force and gyroscopic moment are introduced to the kinematic constraints and force equilibrium equations. and the waviness of rolling elements is modeled by sinusoidal function to calculate the contact force at each ball. The numerical solutions of governing equation of berating due to waviness are calculated by using the Newton-Raphson method. The accuracy of the research is validated by comparing the contact force. contact angle in case of considering the centrifugal force and gyroscopic moment of bal and the contact force and vibration frequencies in cases of considering waviness with the prior researches respectively. It investigates the stiffness, contact force. displacement and vibration frequencies of the ball bearing considering not only the centrifugal force and gyroscopic moment of ball but also the waviness of the rolling elements.

  • PDF

실리콘 압저항형 진동 센서를 이용한 Voice-coil형 구동기의 미소 전자력 측정 (The Micro Electromagnetic Force Measurement of Voice-coil Actuator using Semiconductor Piezoresistive Type Vibration Sensor)

  • 권기진;이기찬;박세광
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권2호
    • /
    • pp.147-152
    • /
    • 1999
  • Semiconductor piezoresistive type vibration sensor was fabricated by using semiconductor process and micromachining technology. To measure the micro electromagnetic force between coil and magnet, fabricated vibration sensor was used. Toapply micro electromagnetic force produced from the micro exciter, small-sized NdFeB permanent magnet was attached on the mass of the fabricated vibration sensor. The measured electromagnetic force are about 5~180dyne when the applied sinusoidal current of 1KHz in the range of 1.5~8mA. The measurement of micro electromagnetic forcewas performed by changing the distance between coil and magnet. Output characteristics of micro electromagnetic force according to the applied coil current were linear. Furthermore, output results were used to get the transfer constant that is important to decide the efficiency and the performance of the coil and magnet.

  • PDF

가공 기계부품 고유진동수 해석과 측정에 관한 연구 (A Study on the Uncertainty of Estimation in Vibration Test for the Machine Parts)

  • 황재덕;김재실;조성진
    • 한국기계가공학회지
    • /
    • 제13권1호
    • /
    • pp.16-22
    • /
    • 2014
  • Resonance refers to the magnification of a structural response which occurs when a linear lightly damped system is driven with a sinusoidal input at its natural frequency. An exploratory vibration test (a natural frequency measurement test) is very important for the vibration testing of machine parts, as the value measured in an actual laboratory affects test results. For this reason, it is necessary to estimate the measurement uncertainty to verify the reliability of this type of test. In this study, measurement uncertainty is estimated based on three uncertainty factors. The uncertain factors are the measured points in the machine parts, the resolution of the vibration equipment, and uncertainty of the calibration certificate.