• Title/Summary/Keyword: Sintering resistance

Search Result 417, Processing Time 0.029 seconds

Effect of the Size and Carbides Dispersion in the Sintering and Hardness of Samples of Stainless Steel Reinforced with NbC And TaC

  • Da Silva Soares, Sergio R.;Gomes, Uilame Umbelino;Furukava, Marciano;De Souza, Carlson Pereira
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.552-553
    • /
    • 2006
  • The present study investigates the behavior of the sintering and hardness of stainless steel samples reinforced with NbC and TaC. Matrixes of pure stainless steel were compacted with addition of up to 3% wt NbC or TaC in a cylindrical die of steel $(\phi\;=\;5,0\;mm)$ at 700 MPa and sintered in an electrical resistance furnace under argon atmosphere. The sintered samples were characterized by density and hardness measurement, optical microscopy and scanning electron microscopy (SEM). The preliminary results show that the size and distribution of carbides influence in the sintering and hardness of the sintered samples.

  • PDF

Laser Surface Treatment of Magnesium Alloy using ZrO2 for Corrosion Resistance (내식성 향상을 위한 마그네슘합금의 ZrO2 적용 레이저 표면 처리)

  • Yoon, Sangwoo;Kang, Dongchan;Kim, Joohan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.93-100
    • /
    • 2016
  • The laser surface treatment of magnesium alloy was studied. $ZrO_2$ was used as sintering ceramics, and its corrosion resistance was verified. Appropriate laser parameters were proposed for homogeneous solidification of the sintered layer. The chemical compositions of the sintered layer were analyzed with laser-induced breakdown spectroscopy. $Na_2SO_4$ was used for a corrosion test, and the resistance of the sintered sample was confirmed. The microstructures of the sintered parts were also examined. The solidified grains on the top sintered surface were observed; however, reasonable fusion was obtained at the interface between the baseline and the ceramics. Laser surface treatment using $ZrO_2$ on magnesium alloy showed an improvement in corrosion resistance.

Impact Resistance of Al2O3-SiC Composites Against High Velocity Copper Jet (고속 구리제트에 대한 알루미나-탄화규소 복합재료의 충돌 저항물성)

  • Kim, Chang-Wook;Lee, Hyung-Bock
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.10 s.293
    • /
    • pp.660-665
    • /
    • 2006
  • The mechanical properties of $Al_2O_3$-SiC composites manufactured with adding various amount and size of SiC particles have been measured and analyzed. Generally, the elastic modulus of the composites shows about 50% less than that of PL-8 (45 wt% $Al_2O_3$-51 wt% $SiO_2$-4 wt% other oxides), but the flexural strength is similar with each other. The impact resistance property of $Al_2O_3$-SiC composite against high velocity copper jet was lower than that of PL-8 when SiC particles of approximately 3 $\mu$m diameter was added to. It is caused probably due to the micro-pores made by oxidation of SiC particles. However, in the case of the less-weighted $Al_2O_3$-SiC composite adding to 10 wt% SiC with average diameter of 10 $\mu$m and sintering at 1200$^{\circ}C$, the impact resistance property was improved up to 37 percent compared with that of PL-8.

Effect of Microstructure on the Corrosion Resistance of Nd-Fe-B Permanent Magnets

  • Li, Jiajie;Li, Wei;Li, Anhua;Zhao, Rui;Lai, Bin;Zhu, Minggang
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.304-307
    • /
    • 2011
  • High performance Nd-Fe-B magnets can be manufactured by both sintering and hot deformation. The corrosion behaviors of the magnets prepared by the two processes were compared. Effect of microstructure on the corrosion resistance of Nd-Fe-B magnets was also investigated. A neutral salt spray test (NSS) was performed for the different-processed magnets. The weight losses of the samples after the corrosion test were measured. The corrosion microstructures were observed using a scanning electron microscope. It shows that the corrosion resistance of hot deformed magnets is much better than that of the sintered ones because the grain size and the distribution of Nd-rich phases of the hot deformed magnets are much finer and more uniform than those of the sintered ones. The different microstructure between the sintered and the hot deformed magnets causes the different corrosion behavior.

Spectral Response of the n-CdS/n-CdTe/p-CdTe Solar Cells (n-Cds/n-CdTe/p-CdTe 태양전지의 분광반응도)

  • Im, H.B.;Kim, S.J.
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.248-250
    • /
    • 1987
  • Transparent CdS films with low electrical restivity on glass substrates were prepared by coating a CdS slurry which contained 10 wt.% $CdCl_2$, and sintering in a nitrogen atmosphere at $600^{\circ}C$ for 2hr. All-polycrystalline CdS/CdTe solar cells were fabricated by coating CdTe slurries, which contained 1.0 or 4.5 wt.% $CdCl_2$, on the sintered CdS films and sintering at $700^{\circ}C$ for various periods of sintering. The spectral responses of the sintered CdS/CdTe solar cells were measured and compared with theoretically calculated quantum efficiency. The spectral responses of the sintered CdS/CdTe solar cells in the short-wavelength region decreases with-increasing sintering time. The poor response in this region is attributed to the existence of the Cd-S-Te solid solution in the compositional junction. The decrease in the maximum response in the long-wavelength region as the sintering exceeds certain time appears to be caused by the increase in the depth of the buried homo junction and by the increase in the series resistance. The $CdCl_2$ in the CdTe layer during sintering enchances the interdiffusion of S, Te or donor impurities across the metallurgical Junction causing the formation of deeper n-p junction in the CdTe layer.

  • PDF

Microstructure and Wear Resistance Properties of Cu-W Sintered Materials Fabricated by Hot Pressing (Hot pressing으로 제조된 Cu-W계 소결재의 미세조직 및 내마모특성)

  • Park, Ji-Hwan;Kim, Su-Bang;Park, Yun-U
    • Korean Journal of Materials Research
    • /
    • v.10 no.3
    • /
    • pp.227-232
    • /
    • 2000
  • Cu-W composites containing 20wt.% W were fabricated by hot pressing. Hot pressing was carried out at temperatures ranging from 800 to $1000^{\circ}C$ under pressures of 15MPa for 30MPa for 30min and 60min. This process gave composites of higher density, higher hardness and higher wear resistance than the conventional sintering processes. However, the microstructure of Cu-W composites under pressure of 15MPa revealed there was an inhomogeneous distribution of W, segregation of W on some area. These undesirable results are attributed to the immiscibility of W in Cu and the pressure effect on sintering.

  • PDF

A Study on the Selection of Stainless Steel for Automotive Inside Mirror Joint by Vacuum Sintering (진공소결을 통한 자동차용 인사이드 미러 접합부의 스테인레스강 선정에 관한 연구)

  • Sung, Si-Myung;Jung, In-Ryung
    • Design & Manufacturing
    • /
    • v.12 no.1
    • /
    • pp.36-40
    • /
    • 2018
  • The car requires an inside mirror installed between the driver's seat and the passenger's seat to ensure the driver's rear and side view of the driver. Inside mirrors must always be attached to the vehicle to ensure the driver's visibility. Inside mirrors attached to the windshield of a vehicle are always exposed to direct sunlight and should be semi-permanently usable in hot and humid summer weather in Korea. Therefore, the mirror mount, which is the junction of the inside mirror, is particularly important in corrosion resistance and wear resistance suitable for humidity. Mirror mounts are currently difficult to manufacture due to their reliance on powder molding technology in advanced countries such as Japan and Germany. This paper focuses on the fabrication of high corrosion resistant stainless mirror mounts by vacuum sintering technique and focuses on the selection of materials suitable for the production of mirror mounts through experiments of 300 series stainless steel and 400 series stainless steel manufactured by vacuum sintering.

Fabrication and Biomaterial Characteristics of HA added Ti-Nb-HA Composite Fabricated by Rapid Sintering (급속소결에 의한 HA가 첨가된 Ti-Nb-HA 복합재료의 제조 및 생체재료 특성)

  • Woo, Kee Do;Kim, Sang Hyck;Kim, Ji Young;Park, Sang Hoon
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.1
    • /
    • pp.86-91
    • /
    • 2012
  • Ti-6Al-4V extra low interstitial (ELI) alloy has been widely used as an orthopedic implant material because of its excellent biocompatibility, corrosion resistance and mechanical properties. However, V-free titanium alloys such as Ti-6%Al-7%Nb and Ti-5%Al-2.5%Fe have recently been developed because of the toxicity of V. Hydroxyapatite (HA) is used as a coating material on Ti or Ti biomaterials due to its good biocompatibility. However, HA coated on Ti alloy causes a problem for tissue by peeling off during usage. Therefore, such peeling off during long time usage can be suppressed by adding HA in Ti or Ti alloy composites. The aim of this study was to manufacture an ultra fine grained (UFG) Ti-Nb-HA bulk alloy, which is usually difficult to fabricate using melting and casting technology, by rapid sintering process using high energy mechanical milled (HEMM) powder.

Influence of Sintering Additives and Temperature on Fabrication of LPS-SiC (액상소결법에 의한 탄화규소 제조시 소결조제와 온도의 영향)

  • JUNG HUN-CHAE;YOON HAN-KI
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.266-270
    • /
    • 2004
  • SiC materials have been extensively studied for high temperature components in advanced energy system and advanced gas turbine because it has excellent high temperature strength, low coefficient of thermal expansion, good resistance to oxidation and good thermal and chemical stability etc. However, the brittle characteristics of SiC such as low fracture toughness and low strain-to fracture still impose a severe limitation on practical applications of SiC materials. For these reasons, SiC/SiC composites can be considered as a promising for various structural materials, because of their good fracture toughness compared with monolithic SiC ceramics. But, high temperature and pressure lead to the degradation of the reinforcing jiber during the hot pressing. Therefore, reduction of sintering temperature and pressure is key requirements for the fabrication of SiC/SiC composites by hot pressing method. In the present work, monolithic Liquid Phase Sintered SiC (LPS-SiC) was fabricated by hot pressing method in Ar atmosphere at $1800^{\circ}C$ under 20MPa using $Al_2O_3,\;Y_2O_3\;and\;SiO_2$ as sintering additives in order to low sintering temperature and sintering pressure. The starting powder was high purity $\beta-SiC$ nano-powder with all average particle size of 30mm. The characterization of LPS-SiC was investigated by means of SEM and three point bending test. Base on the composition of sintering additives-, microstructure- and mechanical property correlation, tire compositions of sintering additives are discussed.

  • PDF

OPTIMIZATION OF VARIABLES AFFECTING CORROSION RESISTANCE OF VACUUM SINTERED STAINLESS STEELS

  • Klar, Erhard;Samal, Prasan
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1995.11a
    • /
    • pp.9-9
    • /
    • 1995
  • MATERIAL AND PROCESS VARIABLES THAT STRONGLY AFFECT THE CORROSION RESISTANCE OF PA4 STAINLESS STEELS, INCLUDE : ALLOY COMPOSITION, POWDER CLEANLINESS, NITROGEN, OXYGEN AND GARBON CONTENTS, CHROMIUM DEPLETION DUE TO SURFACE EVAPORATION AND SINTERED DENSITY. THE OPTIMUM PROCESS PARAMETERS FOR DELUBRICATION AND SINTERING THAT RESULT IN LOWEST LEVELS OF NITROGEN, OXYGEN AND CARBON AND MINIMUM LEVELS OF CHROMIUM DEPLETION WILL BE PRESENTED, FOR A NUMBER OF AUSTENTIC AND FERRITIC STAINLESS STEELS. THE EFFECT OF SINTERED DENSITY ON THE CORROSION RESISTANCE OF BOTH AUSTENITIC AND FERRITIC GRADES OF STAINLESS STEEL WILL ALSO BE COVERED.

  • PDF