Browse > Article
http://dx.doi.org/10.3365/KJMM.2012.50.1.086

Fabrication and Biomaterial Characteristics of HA added Ti-Nb-HA Composite Fabricated by Rapid Sintering  

Woo, Kee Do (Division of Advanced Materials Engineering & Research Center of Advanced Materials Development)
Kim, Sang Hyck (Division of Advanced Materials Engineering & Research Center of Advanced Materials Development)
Kim, Ji Young (Division of Advanced Materials Engineering & Research Center of Advanced Materials Development)
Park, Sang Hoon (Division of Advanced Materials Engineering & Research Center of Advanced Materials Development)
Publication Information
Korean Journal of Metals and Materials / v.50, no.1, 2012 , pp. 86-91 More about this Journal
Abstract
Ti-6Al-4V extra low interstitial (ELI) alloy has been widely used as an orthopedic implant material because of its excellent biocompatibility, corrosion resistance and mechanical properties. However, V-free titanium alloys such as Ti-6%Al-7%Nb and Ti-5%Al-2.5%Fe have recently been developed because of the toxicity of V. Hydroxyapatite (HA) is used as a coating material on Ti or Ti biomaterials due to its good biocompatibility. However, HA coated on Ti alloy causes a problem for tissue by peeling off during usage. Therefore, such peeling off during long time usage can be suppressed by adding HA in Ti or Ti alloy composites. The aim of this study was to manufacture an ultra fine grained (UFG) Ti-Nb-HA bulk alloy, which is usually difficult to fabricate using melting and casting technology, by rapid sintering process using high energy mechanical milled (HEMM) powder.
Keywords
biomaterials; sintering; corrosion resistance; SEM; Ti-Nb-HA composite;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Semlitsch, F. Staub, and H. Webber, Biomed. Tech. 30, 334 (1985).
2 R. M. Pilliar, H. U. Cameron, A. G. Binnington, J. Szivek, and I. Macnab, J. Biomed. Mater. Res. 13, 799 (1979).
3 M. Niinomi, Mater. Sci. Eng., A243, 231 (1998).
4 C. Q. Ning and Y. Zhou, Biomat. 25, 3382 (2004).
5 E. H. Kim, Y. C. Kim, S. H. Han, S. J. Yang, J. W. Park, and H. K. Seok, J. Kor. Inst. Met. & Mater. 47, 13 (2009).
6 M. Abdel-Hady, K. Hinoshita, and M. Morinaga, Scri. Mater. 55, 477 (2006).
7 A. M. Omran, K. D. Woo, D. K. Kim, S. W. Kim, M. S. Moon, N. A. Barakat, and D. L. Zhanm, J. Kor. Inst. Met. & Mater. 14, 321 (2008).
8 K. D. Woo, H. B. Lee, I. Y. Kim, I. J. Shon, and D. L. Zhang, Met. Mater. Int. 14, 327 (2008).
9 Y. T. Feng, K. Han, and D. R. J. Owen, Mater. Sci. Eng. A375, 815 (2004).
10 K. D. Woo, G. S. Choi, H. B. Lee, I. Y. Kim, and D. L. Zhang, Kor. J. Mater. Res. 17, 587 (2007).
11 C. Suryanarayana and M. Grant Norton, X-ray Diffraction A Practical Approach, p. 207, Plenum Press, New York (1988).
12 D. W. Kim and Y. S. Lee, J. Kor. Inst. Met. & Mater. 42, 571 (2004).