• Title/Summary/Keyword: Sintering properties

Search Result 2,373, Processing Time 0.027 seconds

Sintering and Microwave Dielectric Properties of Bi18(Ca0.725Zn0.275)8Nb12O65 [BCZN] Dielectrics with V2O5 Addition (소결조제 V2O5 첨가에 따른 Bi18(Ca0.725Zn0.275)8Nb12O65 [BCZN] 유전체의 소결 및 마이크로파 유전특성)

  • Lee, Young-Jong;Kim, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.289-294
    • /
    • 2010
  • For the aim of low-temperature co-fired ceramic microwave components, sintering behavior and microwave properties (dielectric constant ${\varepsilon}_r$, quality factor Q, and temperature coefficient of resonant frequency ${\tau}_f$) are investigated in $Bi_{18}O(Ca_{0.725}Zn_{0.275})_8Nb_{12}O_{65}$ [BCZN] ceramics with addition of $V_2O_5$. The specimens are prepared by conventional ceramic processing technique. As the main result, it is demonstrated that the additives ($V_2O_5$) show the effect of lowering of sintering temperature and improvement of microwave properties at the optimum additive content. The addition of 0.25 wt% $V_2O_5$ lowers the sintering temperature to $890^{\circ}C$ utilizing liquidphase sintering and show the microwave dielectric properties (dielectric constant ${\varepsilon}_r$ = 75, quality factor $Q{\times}f$ = 572 GHz, temperature coefficient of resonance frequency ${\tau}_f\;=\;-10\;ppm/^{\circ}C$). The estimated microwave dielectric properties with $V_2O_5$ addition (increase of ${\varepsilon}_r$, decrease of $Q{\times}f$, shift of ${\tau}_f$ to negative values) can be explained by the observed microstrucure (sintered density, abnormal grain structure) and possibly high-permittivity $Bi_{18}Zn_8Nb_{12}O_{65}$ (BZN) phase determined by X-ray diffraction.

Fabrication of Ti-Mo Core-shell Powder and Sintering Properties for Application as a Sputtering Target (Ti-Mo 코어-쉘 분말 제조 및 소결 특성 연구)

  • Won Hee Lee;Chun Woong Park;Heeyeon Kim;Yuncheol Ha;Jongmin Byun;Young Do Kim
    • Journal of Powder Materials
    • /
    • v.31 no.1
    • /
    • pp.43-49
    • /
    • 2024
  • In this study, a core-shell powder and sintered specimens using a mechanically alloyed (MAed) Ti-Mo powder fabricated through high-energy ball-milling are prepared. Analysis of sintering, microstructure, and mechanical properties confirms the applicability of the powder as a sputtering target material. To optimize the MAed Ti-Mo powder milling process, phase and elemental analyses of the powders are performed according to milling time. The results reveal that 20 h of milling time is the most suitable for the manufacturing process. Subsequently, the MAed Ti-Mo powder and MoO3 powder are milled using a 3-D mixer and heat-treated for hydrogen reduction to manufacture the core-shell powder. The reduced core-shell powder is transformed to sintered specimens through molding and sintering at 1300 and 1400℃. The sintering properties are analyzed through X-ray diffraction and scanning electron microscopy for phase and porosity analyses. Moreover, the microstructure of the powder is investigated through optical microscopy and electron probe microstructure analysis. The Ti-Mo core-shell sintered specimen is found to possess high density, uniform microstructure, and excellent hardness properties. These results indicate that the Ti-Mo core-shell sintered specimen has excellent sintering properties and is suitable as a sputtering target material.

Electrical Properties and Clamping Voltage Characteristics of ZPCCY-Based Varistor Ceramics (ZPCCY계 바리스터 세라믹스의 전기적 성질 및 제한전압 특성)

  • Nahm Choon-Woo;Park Jong-Ah
    • Korean Journal of Materials Research
    • /
    • v.15 no.3
    • /
    • pp.143-148
    • /
    • 2005
  • The microstructure, electrical properties, and clamping voltage characteristics of $ZnO-Pr_6O_{11}-CoO-Cr_2O_3-Y_2O_3(ZPCCY)-based$ varistor ceramics sintered at $1350^{\circ}C$ were investigated as a function of sintering time from 1 to 3 h. With increasing sintering time, the average grain size and density increased in the range of $11.4\~16.0\;{\mu}m$ and $5.34\~5.54g/cm^3$, respectively, in accordance of increasing sintering time. The nonlinear exponent decreased in the range of $60\~26$ and the leakage current increased in the range of $1.3\~10.7\;{\mu}A$ with increasing sintering time. The clamping voltage ratio increased in the range $1.58\~1.65$ for ratio surge current of 10 A as the sintering time increased.

Microstructure and Ferroelectric Properties of Low Temperature Sintering PMN-PNN-PZT Ceramics with Sintering Temperature (저온소결 PMN-PNN-PZT세라믹스의 소결온도에 따른 미세구조 및 강유전특성)

  • Yoo, Ju-Hyun;Lee, Hyun-Seok;Lee, Sang-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.12
    • /
    • pp.1118-1122
    • /
    • 2006
  • In this study, in order to develop the low temperature sintering multilayer piezoelectric actuator, PMN-PNN-PZT system ceramics were manufactured and their microstructure, ferroelectric and piezoelectric properties were investigated. By increasing sintering temperature, remanent polarization$(P_r)$ was increased due to the increase of sinterability and grain size. However, coercive $field(E_c)$ showed an opposite tendency to remanent polarization owing to the feasibility of domain wall motion. At the sintering temperature of $900^{\circ}C$, dielectric $constant({\varepsilon}_r)$, electromechanical coupling $factor(k_p)$, piezoelectric $constant(d_{33})$ and mechanical quality $factor(Q_m)$ showed the optimal value of 1095, 0.60, 363 and 1055, respectively, for multilayer piezoelectric actuator application.

The effect of sintering temperature on the electrical properties of ZnO ceramics (ZnO세라믹스의 소결온도가 전기적 특성에 미치는 영향)

  • 김용혁;이덕출
    • Electrical & Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.40-47
    • /
    • 1995
  • Electrical properties of ZnO ceramics based on Bi oxide was investigated in relation to sintering temperature. In the temperature range >$1150^{\circ}C$ to >$1350^{\circ}C$ the grain size increased from 9.mu.m to 20.mu.m when the sintering temperature was raised. The leakage current in the low voltage range increased as the potential barrier decreases, which is caused by increasing the grain size at high temperature. The dielectric characteristics of the ZnO ceramics was also affected by sintering temperature. Large dielectric constant was attributed, to the grainboundary layer of polycrystalline ZnO ceramics and decreasing grainboundary width. The variation of breakdown voltage with sintering temperature was attributed to the change of the donor concentration in the ZnO grain and grain size. The results showed that breakdown voltage increased decreasing grain size and donor concentration. Nonohmic coefficient was associated with the lower breakdown voltage per grainboundary layer due to the grain growth and higher donor concentration.

  • PDF

A Study on the Forsterite Porcelain as a High Frequency Insulator(II) (Influence of $BaCO_3$, excess MgO on the Properties of Forsterite Porcelain) (고주파용 절록재료로서의 Forsterite 자기에 관한 연구(II) (Forsterite 자기 성질에 미치는 과잉 Mg 성분과 $BaCO_3$의 영향))

  • 이웅상;황성연
    • Journal of the Korean Ceramic Society
    • /
    • v.19 no.3
    • /
    • pp.205-214
    • /
    • 1982
  • The method of lowering the sintering temperature and enlarging the range of sintering temperature in the manufacture of forsterite porcelain as a high frequency insulator was investigated. The four kinds of forsterite chamotte were calcinated at $1400^{\circ}C$. The forsterite bodies produced by adding $BaCO_3$ as a flux and 5% Kaolin as a bonding agent were heated in the range of sintering temperature. Sintering temperature tended to increase almost straightly as MgO exceded without $BaCO_3$. The range of sintering tem was at least $140^{\circ}C$. Specimens of MF-2-0, MF-2-A had superior mechanical strength and dielectric properties. The growing of the forsterite crystal was restricted and thus their grain size became fine and also the amount of crystal formation tended to decrease rapidly as $BaCO_3$ increased excessively.

  • PDF

A Study on Machinability of Silicon Nitride Ball Sintered by Various Gas Pressure Sintering(GPS) Conditions (가스압 소결조건에 따른 질화규소볼의 가공성에 대한 연구)

  • 이수완;김성호;정용선
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.2
    • /
    • pp.115-122
    • /
    • 1998
  • The effect of sintering conditions on the sinterability for silicon nitride has been studied by many in-vestigators. However the effect of sintering conditions on the machinability which is the major barrier to the field applications of the ceramic components has not been fully studied. In this study the sintering con-ditions such as temperature gas pressure and time in silicon nitride were varied. The physical and mechan-ical properties of the gas pressure sintered (GPS) silicon nitride were measured. The optimum mi-crostructure of silicon nitride with the excellent machinability was investigated by MFG(magnetic-fluid grinding) technique. An attempt was made to figure out how the mechanical properties influence upon the machinability of silicon nitride ball.

  • PDF

Strength Properties of $Al_2O_3$ Ceramics with Textile Machinery (섬유기기용 $Al_2O_3$계 세라믹스의 강도 특성)

  • An, B.G.;Ahn, S.H.;Park, I.D.;Nam, K.W.
    • Journal of Power System Engineering
    • /
    • v.8 no.4
    • /
    • pp.44-48
    • /
    • 2004
  • For many years researchers have been attempting to establish the relations among the preparation history, structure and properties of ceramics. In this study, the strength property of $Al_2O_3$ ceramics with components and giudes of the textile machinery was investigated. The optimized conditions of ressureless sintering were investigated in order to obtain the maximum strength of $Al_2O_3$ ceramics for using at the textile machinery. As the sintering conditions, $1,400{\sim}1,700^{\circ}C$ of temperatures and $30{\sim}150$ minutes of times were applied. Three-point bending test was conducted on the sintered materials to obtain the strength property. From test results, the optimum sintering temperature has $1,600^{\circ}C$. And the optimum sintering time in $1,600^{\circ}C$ has about 100 minutes.

  • PDF

Effect of Sintering Conditions on the Electromagnetic Properties of Mn-Zn Ferrites (소결조건이 Mn-Zn Ferrites의 전자기적 물성에 미치는 효과)

  • 최윤호;신명승;한승기;한영호
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.6
    • /
    • pp.561-568
    • /
    • 1997
  • The effects of sintering temperature and oxygen partial pressure on the electromagnetic properties of Mn-Zn ferrites were investigated. The grain increased with increasing temperature. The power loss at 100 kHz was decreased, while the power loss at 500 kHz was increased as the grain size increased with sintering temperature. Sintering with low oxygen partial pressure at 115$0^{\circ}C$ resulted in high density and initial permeability, and decreased the power loss at 100 kHz and 500 kHz. The oxygen partial pressure lower than 10-2 atm. during heating, significantly suppressed the hysteresis loss. However, the oxygen activity did not affect the grain size of sintered cores.

  • PDF

Sintering Temperature Effect on Electrical and Dielectric Stability of ZPCCL-Based Varistors (소결온도가 ZPCCL계 바리스터의 전기적, 유전적 안정성에 미치는 영향)

  • Nahm, Choon-Woo
    • Korean Journal of Materials Research
    • /
    • v.16 no.8
    • /
    • pp.466-472
    • /
    • 2006
  • The electrical, dielectric properties, and its stability of ZPCCL-based varistors were investigated for different sintering temperatures in the range of $1230{\sim}1300^{\circ}C$. As the sintering temperatures increased, the varistor voltage decreased in the range of $777.9{\sim}108$ V/mm, the nonlinear coefficient decreased in the range of $77.9{\sim}7.1$, and the leakage current increased in the range of $0.3{\sim}50.6\;{\mu}A$. The stability of electrical and dielectric characteristics was obtained from sintering temperature of $1260^{\circ}C$. the varistors sintered at $1260^{\circ}C$ marked the high electrical and dielectric stability, with $%{\Delta}{V_{1mA}=+1.9%,\;%{\Delta}{\alpha}=-10.6%,\;%{\Delta}I_L=+20%\;and\;%{\Delta}tan\;{\delta}=+9.9%$ for DC accelerated aging stress state of $0.95V_{1mA}/150^{\circ}C$/24 h.