DOI QR코드

DOI QR Code

Sintering and Microwave Dielectric Properties of Bi18(Ca0.725Zn0.275)8Nb12O65 [BCZN] Dielectrics with V2O5 Addition

소결조제 V2O5 첨가에 따른 Bi18(Ca0.725Zn0.275)8Nb12O65 [BCZN] 유전체의 소결 및 마이크로파 유전특성

  • Lee, Young-Jong (Department of Materials Engineering, Chungbuk National University) ;
  • Kim, Sung-Soo (Department of Materials Engineering, Chungbuk National University)
  • 이영종 (충북대학교 신소재공학과, 산업과학기술연구소) ;
  • 김성수 (충북대학교 신소재공학과, 산업과학기술연구소)
  • Received : 2010.06.11
  • Accepted : 2010.07.08
  • Published : 2010.08.28

Abstract

For the aim of low-temperature co-fired ceramic microwave components, sintering behavior and microwave properties (dielectric constant ${\varepsilon}_r$, quality factor Q, and temperature coefficient of resonant frequency ${\tau}_f$) are investigated in $Bi_{18}O(Ca_{0.725}Zn_{0.275})_8Nb_{12}O_{65}$ [BCZN] ceramics with addition of $V_2O_5$. The specimens are prepared by conventional ceramic processing technique. As the main result, it is demonstrated that the additives ($V_2O_5$) show the effect of lowering of sintering temperature and improvement of microwave properties at the optimum additive content. The addition of 0.25 wt% $V_2O_5$ lowers the sintering temperature to $890^{\circ}C$ utilizing liquidphase sintering and show the microwave dielectric properties (dielectric constant ${\varepsilon}_r$ = 75, quality factor $Q{\times}f$ = 572 GHz, temperature coefficient of resonance frequency ${\tau}_f\;=\;-10\;ppm/^{\circ}C$). The estimated microwave dielectric properties with $V_2O_5$ addition (increase of ${\varepsilon}_r$, decrease of $Q{\times}f$, shift of ${\tau}_f$ to negative values) can be explained by the observed microstrucure (sintered density, abnormal grain structure) and possibly high-permittivity $Bi_{18}Zn_8Nb_{12}O_{65}$ (BZN) phase determined by X-ray diffraction.

Keywords

References

  1. K. Wakino, T. Nishikikawa, Y. Ishikawa and H. Tamura: Br. Ceram. Trans. J., 89 (1990) 39.
  2. K. Wakino, K. Minai and H. Tamura: J. Am. Ceram. Soc., 67 (1984) 278. https://doi.org/10.1111/j.1151-2916.1984.tb18847.x
  3. H. Mandai and S. Okubo: Ceram. Trans., 32 (1993) 91.
  4. H. Kagata, T. Inoue and J. Kato: Jpn. J. Appl. Phys., 31 (1992) 3152. https://doi.org/10.1143/JJAP.31.3152
  5. T. Takenaka, K. Maruyama and K. Sakata: Jpn. J. Appl. Phys., 30 (1991) 2236. https://doi.org/10.1143/JJAP.30.2236
  6. H. C. Ling, M. F. Yan and W. W. Rhodes: J. Appl. Phys., 5 (1990) 1752.
  7. H. T. Kim, S. H. Kim, S. Nahm and J. D. Byun: J. Am. Ceram. Soc., 82 (1999) 3043. https://doi.org/10.1111/j.1151-2916.1999.tb02200.x
  8. H. B. Hong, D. W. Kim and K. S. Hong: Jpn. J. Appl. Phys., 42 (2003) 5172. https://doi.org/10.1143/JJAP.42.5172
  9. H. Wang, H. Du, Z. Peng, M. Zhang and X. Yao: Ceram. Int., 30 (2004) 1225. https://doi.org/10.1016/j.ceramint.2003.12.076
  10. E. A. Nenesheva and N. F. Kartenko: J. Eur. Ceram. Soc., 26 (2006) 1929. https://doi.org/10.1016/j.jeurceramsoc.2005.09.029
  11. B. W. Hakki and P. D. Coleman: IEEE Trans. MTT., 8 (1960) 402. https://doi.org/10.1109/TMTT.1960.1124749
  12. J. K. Vaid, A. Parkash and A. Mansingh: IEEE Trans. MTT, 27 (1979) 791. https://doi.org/10.1109/TMTT.1979.1129731
  13. F. Azough, C. Leach and R. Freer: J, Eur. Cer. Soc., 25 (2005) 2839. https://doi.org/10.1016/j.jeurceramsoc.2005.03.152
  14. Y. C. Zhang, L. T. Li, Z. X. Yue and Z. L. Gui: Mater. Sci. Eng. B, 99 (2003) 282. https://doi.org/10.1016/S0921-5107(02)00525-1