• Title/Summary/Keyword: Sintering process condition

Search Result 118, Processing Time 0.021 seconds

Long Duration Withstand Current Characteristics of ZnO Varistors (ZnO 바리스터 소자의 장시간 방전내량 특성)

  • Cho, Han-Goo;Yoon, Han-Soo;Kim, Suk-Soo;Han, Se-Won;Yu, Kun-Yang;Lee, Yong-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.544-545
    • /
    • 2005
  • This paper describes the long duration withstand current characteristics of ZnO varistors. Two ZnO varistors were manufactured with general ceramic production methods and three abroad varistors were also prepared to be compared. During long duration withstand test, sample 1 was destroyed at 4th impulse current but the rest passed test. Before and After the test, the residual voltage variation of varistors passed was below 5%. According to the test results, it is thought that the manufacturing process such as insulating coating, sintering condition and soldering method should be improved.

  • PDF

Calcined Condition and Characteristic of Cu-Ni-Zn Ferrite Powder Made by Thermal Decomposition of Organic Acid Salt (유기산염 열분해법으로 합성한 Cu-Ni-Zn 페라이트분말의 특성과 하소조건)

  • 정재우
    • Journal of Powder Materials
    • /
    • v.2 no.1
    • /
    • pp.29-35
    • /
    • 1995
  • In this study the calcined condition and characteristic of Cu-Ni-Zn ferrite powder were investigated. The Cu-Ni-Zn ferrite powder has been synthesized by the thermal decomposition of the organic acid salt. This process did not require a strict pH control and provided the uniform composition and fine powder with about 0.3 $\mu\textrm{m}$. The XRD diffraction pattern of this powder showed about 50% spinel phase. The optimum calcination was found to be done at $700^{\circ}C$ for one hour. After the calcination, the amount of spinel increased to 90%. The distribution of the particle size showed bimodal peaks, one was about 0.5 $\mu\textrm{m}$ and the other was about 20 $\mu\textrm{m}$. The large particles of 20 $\mu\textrm{m}$ were the agglomeration of fine Particles. The mean Particle size of the powder was about 0.4 $\mu\textrm{m}$. The powder was compacted under 100 MPa pressure and sintered at 1100~ $1250^{\circ}C$ for one hour in air. The density of ferrites specimen was a function of the sintering temperature. The higher the temperature, the denser the ferrite. The maximum relative density of the sintered ferrite was about 93% at $1250^{\circ}C$. The grain size of sintered specimen at $1200^{\circ}C$ was 5 $\mu\textrm{m}$ and homogeneous.

  • PDF

Effect of Residual Impurity on Magnetic Properties of the Permalloy Soft Magnet by Powder Injection Molding (분말사출성형으로 제조된 퍼말로이 연자성체에서 잔류 불순물이 자기특성에 미치는 영향)

  • 정원용;최준환;정우상
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.6
    • /
    • pp.291-296
    • /
    • 2000
  • The manufacturing method of permalloy soft magnet with the Ni contents of 46.6 and 47.2 wt% was investigated by powder injection molding technology. The magnetic properties of permalloy were greatly affected on the residual carbon and oxygen content of the sintered magnet. Solvent extraction and thermal debinding process to minimize the residual carbon content in sintered magnet were developed by controlling the debinding atmosphere. The residual carbon content depends on the debinding condition of the binder system for powder injection molding and the residual oxygen content on the sintering atmosphere. The sintered magnet produced by powder injection molding process had a 50 ppm. residual carbon, 150 ppm. residual oxygen. The coercivity and maximum relative permeability of permalloy soft magnet were 0.46 Oe and 14,600 respectively.

  • PDF

Research for Solder Paste in Metallic Glass System for Thermoelectric Modules (고온열전모듈용 금속유리계 페이스트 연구)

  • Seo, Seung-Ho;Son, Geun Sik;Seo, Kang Hyun;Choi, Soon-Mok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.4
    • /
    • pp.249-254
    • /
    • 2018
  • We researched about a bulk metallic glass system as an additive to an Ag paste for high temperature thermoelectric modules. Bulk metallic glass (BMG) ribbons were produced by using a rapid solidification process (RSP) under a cooling rate condition higher than $10^{\circ}C/sec$. We investigated BMG characteristics of the ribbons by means of x-ray diffraction (XRD) and differential scanning calorimetry (DSC) in order to evaluate the glass transition temperature ($T_g$) and the recrystallization temperature ($T_x$) lower than $400^{\circ}C$. A milling process was also developed to apply the BMG ribbons to a commercial Al paste as an additive for lower sintering temperature.

Influence of WIP conditions on dimensional change of LTCC sheet (온간 정수압 공정 조건에 따른 LTCC sheet의 수축률)

  • Jeong, M.S.;Yoon, Y.H.;Rhim, S.H.;Yoon, S.M.;Oh, S.I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.507-511
    • /
    • 2008
  • LTCC (Low Temperature Co-fired Ceramic) has been successfully applied to ceramic substrates for circuits and micro-fluidic systems and has proven its superior performance in a variety of applications. The prediction of shrinkage in LTCC process is an important for dimensional control of micro LTCC products which has influences on electronic characteristics. For avoiding the unpredictable shrinkage of LTCC during the sintering which makes accurate placement of the circuit devices difficult, pre-processes such as WIP (Warm Isostatic Pressing) and lamination must be modified. The objective of the present investigation is to establish a proper WIP conditions for near net shape fabrication of LTCC products. This paper discusses the influence of WIP conditions on the dimensional change of LTCC sheet. In the investigation, it is shown that the shrinkage values of sheets depend on WIP conditions and sheet directions. This work is a quantitative evaluation of the effect of WIP pressure on shrinkage of LTCC sheet. Additionally, the results show anisotropic shrinkage behaviour of sheet during LTCC process.

  • PDF

Study on the Surface Characterization of Structure made of Polyamide 12 manufactured by Additive Manufacturing Process (적층 기법으로 제작한 polyamide 12 소재 적용 구조물 표면 특성 분석 연구)

  • Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.481-487
    • /
    • 2019
  • Additive manufacturing is a state-of-the-art manufacturing process technology in which three-dimensional structures are fabricated by laminating two-dimensional sections of a structure using various materials such as plastic, ceramics, and metals. The additive manufacturing technology has the advantage of high design freedom, while the surface property (roughness) of the finished product varies depending on the process conditions, which necessitates performing a post-process after the products are manufactured. In this study, the surface roughness of a structure made of polyamide 12, which was manufactured by SLS (Selective Laser Sintering) and MJF (Multi Jet Fusion) process was compared. The processing condition was classified by the building orientation of structure as 0, 45, and 90 degrees, which is the angle between the analytical surface and the horizontal plane of the fabrication platform. Structures with a hole of various diameters ranging from 1mm to 10mm were manufactured and the hole characteristics (ratio of hole depth to diameter) and results of the specimens were compared. As a result of the surface characteristics analysis, the surface roughness value of the specimens manufactured with a building orientation of $45^{\circ}$ was the highest in both technologies. In the case of the through-hole structure fabrication, the shape was maintained with 5mm and 10mm diameter holes regardless of the building orientation, although the hole forming was difficult for the smaller holes.

Effect of Freezing and Sintering Condition of CuO-SnO2/Camphene Slurries on the Pore Structure of Porous Cu-Sn (CuO-SnO2/camphene 슬러리의 동결 및 소결조건이 Cu-Sn 다공체의 기공구조에 미치는 영향)

  • Kim, Joo-Hyung;Oh, Sung-Tag;Hyun, Chang-Yong
    • Journal of Powder Materials
    • /
    • v.23 no.1
    • /
    • pp.49-53
    • /
    • 2016
  • The present study demonstrates the effect of freezing conditions on the pore structure of porous Cu-10 wt.% Sn prepared by freeze drying of $CuO-SnO_2$/camphene slurry. Mixtures of CuO and $SnO_2$ powders are prepared by ball milling for 10 h. Camphene slurries with 10 vol.% of $CuO-SnO_2$ are unidirectionally frozen in a mold maintained at a temperature of $-30^{\circ}C$ for 1 and 24 h, respectively. Pores are generated by the sublimation of camphene at room temperature. After hydrogen reduction and sintering at $650^{\circ}C$ for 2 h, the green body of the $CuO-SnO_2$ is completely converted into porous Cu-Sn alloy. Microstructural observation reveals that the sintered samples have large pores which are aligned parallel to the camphene growth direction. The size of the large pores increases from 150 to $300{\mu}m$ with an increase in the holding time. Also, the internal walls of the large pores contain relatively small pores whose size increases with the holding time. The change in pore structure is explained by the growth behavior of the camphene crystals and rearrangement of the solid particles during the freezing process.

Effect of Hydrogen Ratio and Tin Addition on the Coke Formation of Platinum Catalyst for Propane Dehydrogenation Reaction (프로판 탈수소화 반응용 백금촉매의 코크 생성에 미치는 수소비와 주석첨가의 영향)

  • Kim, Soo Young;Kim, Ga Hee;Koh, Hyoung Lim
    • Clean Technology
    • /
    • v.22 no.2
    • /
    • pp.82-88
    • /
    • 2016
  • The loss of activity by coke is an important cause of catalyst deactivation during industrial operation. In this study, hydrogen ratio of reaction condition, which has influenced on coke formation over Pt-Sn catalyst, and regeneration of catalysts activity by coke burning, Pt sintering of coke burning as coke contents, effects of coke formation and deactivation with different Sn contents were confirmed. Pt-Sn-K catalyst supported on θ-alumina and γ-alumina was prepared progressively. Activity of regenerated catalyst for propane dehydrogenation was compared with fresh catalyst by coke burning, after propane dehydrogenation was carried out with different hydrogen ratio at 620 ℃ on fresh catalyst. Regenerated catalyst’s physical characterization such as BET, coke analysis and XRD was investigated. Through catalytic activity test and characterization, Sn contents of catalyst and hydrogen ratio in feed stream could affect coke formation on catalyst surface. Excessive coke makes loss of activity and Pt sintering during air regeneration process.

Preparation of Metal Injection Molded Dental Components using Spheroidized Ti Powders by Plasma Process (플라즈마 공정으로 구상화된 티타늄 분말과 금속사출성형 공정을 이용한 치과용 부품 제조)

  • Gwak, Ji-Na;Yang, Sangsun;Yun, Jung-Yeul;Kim, Ju-Yong;Park, Seongjin;Kim, Hyun-Seung;Kim, Yong-Jin;Park, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.20 no.6
    • /
    • pp.467-473
    • /
    • 2013
  • This research presents a preparation method of dental components by metal injection molding process (MIM process) using titanium scrap. About $20{\mu}m$ sized spherical titanium powders for MIM process were successfully prepared by a novel dehydrogenation and spheroidization method using in-situ radio frequency thermal plasma treatment. The effects of MIM process parameters on the mechanical and biological properties of dental components were investigated and the optimum condition was obtained. After sintering at $1250^{\circ}C$ for 1 hour in vacuum, the hardness and the tensile strength of MIMed titanium components were 289 Hv and 584 MPa, respectively. Prepared titanium dental components were not cytotoxic and they showed a good cell proliferation property.

A Study of Frangibility of 9MM Bullet Related to Material Composition and Sinter Condition (합금 조성 및 소결 조건에 따른 9MM 탄자의 파쇄성에 관한 연구)

  • Kim, Bo-Ram;Seo, Jung-Hwa;Jung, Hee-Chur;Kim, Kyu-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.615-622
    • /
    • 2020
  • Frangible bullets, which are shredded after impact on a target, reduce the possibility of both ricochet and unexpected injury in shooting training and in mission acts in dams, nuclear power plants, and cultural properties. Reducing the levels of hazardous materials in shooting ranges, such as lead, has become an important agenda for the government and environmental groups. In this study, the shape of a frangible bullet was designed for efficient shredding, and the safety and reliability were confirmed by actual firing under different process conditions. In addition, the physical characteristics, such as compaction pressure, density, and frangibility of each process, were compared by analyzing the microstructure of the sintered frangible bullet. The experiment revealed the smallest fragmentation after impact on the target under the following conditions: Cu-Sn 85:15; sintering temperature, 600℃; sintering time, one hour. Further development of the process conditions and experimental methods will contribute to the performance and environmental improvement of a frangible bullet.