• Title/Summary/Keyword: Sintering activation energy

Search Result 66, Processing Time 0.025 seconds

Oxygen Permeation Properties of La0.7Sr0.3Co0.3Fe0.7O3-δ Membrane (La0.7Sr0.3Co0.3Fe0.7O3-δ 분리막의 산소투과특성)

  • Son, Sou Hwan;Kim, Jong-Pyo;Park, Jung Hoon;Lee, Yongtaek
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.310-315
    • /
    • 2009
  • Perovskite-type ceramic powder, $La_{0.7}Sr_{0.3}Co_{0.3}Fe_{0.7}O_{3-{\delta}}$, have been synthesized successfully by the citrate method. As a result of TGA for precursor, metal-citrate complex in precursor was decomposed in the temperature range of $150{\sim}650^{\circ}C$. XRD analysis showed the single perovskite structure was observed over $1,000^{\circ}C$ without impurities. Typical dense membrane with 1.6 mm thickness has been prepared using as-prepared powder by pressing unilaterally and sintering at $1,300^{\circ}C$. The electrical conductivity of $La_{0.7}Sr_{0.3}Co_{0.3}Fe_{0.7}O_{3-{\delta}}$ membrane increased with increasing temperature at atmosphere of air and then decreased over $600^{\circ}C$ due to oxygen loss from the crystal lattice. The oxygen flux of $La_{0.7}Sr_{0.3}Co_{0.3}Fe_{0.7}O_{3-{\delta}}$ membrane in the range of 700 to $950^{\circ}C$ increased with the increasing temperature from 0.045 to $0.415ml/cm^2{\cdot}min$. The activation energy for oxygen permeation was calculated to be 89.17 kJ/mol.

Characteristic of Pd-Cu-Ni Alloy Hydrogen Membrane using the Cu Reflow (Cu Reflow를 이용한 Pd-Cu-Ni 합금 수소분리막 특성)

  • Kim, Dong-Won;Kim, Heung-Gu;Um, Ki-Youn;Kim, Sang-Ho;Lee, In-Seon;Park, Jong-Su;Ryi, Shin-Kun
    • Korean Chemical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.160-165
    • /
    • 2006
  • A Pd-Cu-Ni alloyed hydrogen membrane has fabricated on porous nickel support formed by nickel powder. Porous nickel support made by sintering shows a strong resistance to hydrogen embrittlement and thermal fatigue. Plasma surface modification treatment is introduced as pre-treatment process instead of conventional HCl wet activation. Nickel was electroplated to a thickness of $2{\mu}m$ in order in to fill micropores at the nickel support surface. Palladium and copper were deposited at thicknesses of $4{\mu}m$ and $0.5{\mu}m$, respectively, on the nickel coated support by DC sputtering process. Subsequently, copper reflow at $700^{\circ}C$ was performed for an hour in $H_2$ ambient. And, as a result PdCu-Ni composite membrane has a pinhole-free and extremely dense microstructure, having a good adhesion to the porous nickel support and infinite hydrogen selectivity in $H_2/N_2$ mixtures.

Fabrication and Electrical Properties of Ni-Mn-Co-Fe Oxide Thick Film NTC Thermistors (Ni-Mn-Co-Fe 산화물 후막 NTC 서미스터의 제조 및 전기적 특성)

  • Park, Kyeong-Soon;Bang, Dae-Young;Yun, Sung-Jin;Choi, Byung-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.10
    • /
    • pp.912-918
    • /
    • 2002
  • Ni-Mn-Co-Fe oxide thick films were coated on an alumina substrate by screening printing technique. The microstructure and electrical properties of the thick films, as a function of composition and sintering temperature, were investigated. The components of the NTC thick films sintered at 1150${\circ}C$ were distributed homogeneously. On the other hand, in the case of the NTC thick films sintered at 1200 and 1250${\circ}C$, Co element was distributed homogeneously, but Ni, Mn and Fe elements were distributed heterogeneously, resulting in the formation of Ni rich and Mn-Fe rich regions. All the thick film NTC thermistors prepared showed a linear relationship between log resistance (log R) and the reciprocal of absolute temperature (1/T), indicative of NTC characteristics. At a given NiO and $Mn_3O_4$ content, the resistance, B constant and activation energy of $(Ni_{1.0}Mn_{1.0}Co_{1-x}Fe_x)O_4$ (0.25${\le}$x${\le}$0.75) and $(Ni_{0.75}Mn_{1.25}Co_{1-x}Fe_x)O_4$ (0.25${\le}$x${\le}$0.75) thermistors increased with increasing $Fe_2O_3$ content.

Preparation of $BaSO_{4}$ : Eu-PTFE TLD Radiation Sensor and Its Physical Characterstics ($BaSO_{4}$ : Eu-PTFE TLD 방사선 센서의 제작과 물리적 특성)

  • U, Hong;Kim, S.H.;Lee, S.Y.;Kang, H.D.;Kim, D.S.
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.59-66
    • /
    • 1992
  • To develop the highly sensitive TLD radiation sensors, $BaSO_{4}$ : Eu-PTFE TLDs are fabricated by polymerizing the PTFE(polytetrafluoroethylene) with $BaSO_{4}$ : Eu TL phosphors. The $BaSO_{4}$ : Eu TL phosphors having the highest sensitivity of $X/{\gamma}$-rays are obtained by sintering at $1000^{\circ}C$ in $N_{2}$ atmosphere a mixture of $BaSO_{4}$ powder with 1mol% Eu($Eu_{2}O_{3}$), 6mol% $NH_{4}Cl$ and 5mol% $(NH_{4})_{2}SO_{4}$ which were co-precipitated in dilute sulfuric acid and then dried. The activation energy, frequency factor and kinetic order of $BaSO_{4}$ : Eu TL phosphor are 1.17eV, $3.6{\times}10^{11}/sec$ and 1.25, respectively. And the spectral peak of $BaSO_{4}$ : Eu is about 425nm. The optimum TL Phosphor content and thickness of the $BaSO_{4}$ : Eu-PTFE TLD are 40wt% and $105.7mg/cm^{2}$. The optimum polymerization temperature and time for fabrication of $BaSO_{4}$ : Eu-PTFE TLDs are $380^{\circ}C$ and 2 hours in air, respectively. The linear dose range to ${\gamma}$ rays is 0.01-20Gy and fading rate is about 10%/60hours.

  • PDF

Current-Voltage and Impedance Characteristics of ZnO-Zn2BiVO6-Co3O4 Varistor with Temperature (ZnO-Zn2BiVO6-Co3O4 바리스터의 전류-전압 및 임피던스의 온도)

  • Hong, Youn Woo;Kim, You Bi;Paik, Jong Hoo;Cho, Jeong Ho;Jeong, Young Hun;Yun, Ji Sun;Park, Woon Ik
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.440-446
    • /
    • 2016
  • This study introduces the characteristics of current-voltage (I-V) and impedance variance for $ZnO-Zn_2BiVO_6-Co_3O_4$ (ZZCo), which is sintered at $900^{\circ}C$, according to temperature changes. ZZCo varistor demonstrates dramatic improvement of non-linear coefficient, ${\alpha}=66$, with lower leakage current and higher insulating resistivity than those of ZZ ($ZnO-Zn_2BiVO_6$) from the aspect of I-V curves. While both systems are thermally stable up to $125^{\circ}C$, ZZCo represents a higher grain boundary activation energy with 1.05 eV and 0.94 eV of J-E-T and from IS & MS, respectively, than that of ZZ with 0.73 eV and 0.82 eV of J-E-T and from IS & MS, respectively, in the region above $180^{\circ}C$. It could be attributed to the formation of $V^*_o$(0.41~0.47 eV) as dominant defect in two systems, as well as the defect-induced capacitance increase from 781 pF to 1 nF in accordance with increasing temperature. On the other hand, both the grain boundary capacitances of ZZ and ZZCo are shown to decrease to 357 pF and 349 pF, respectively, while the resistances systems decreased exponentially, in accordance with increasing temperature. So, this paper suggests that the application of newly formed liquid phases as sintering additives in both $Zn_2BiVO_6$ and the ZZCo-based varistors would be helpful in developing commercialized devices such as chips, disk-type ZnO varistors in the future.

Preparation and Oxygen Permeation Properties of La0.07Sr0.3Co0.2Fe0.8O3-δ Membrane (La0.07Sr0.3Co0.2Fe0.8O3-δ 분리막의 제조 및 산소투과 특성)

  • Park, Jung Hoon;Kim, Jong Pyo;Baek, Il Hyun
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.477-483
    • /
    • 2008
  • $La_{0.7}Sr_{0.3}Co_{0.2}Fe_{0.8}O_{3-{\delta}$ oxide was synthesized by a citrate method and a typical dense membrane of perovskite oxide has been prepared using as-prepared powder by pressing and sintering at $1300^{\circ}C$. Precursor of $La_{0.7}Sr_{0.3}Co_{0.2}Fe_{0.8}O_{3-{\delta}$ prepared by citrate method was investigated by TGA and XRD. Metal-citrate complex in precursor was decomposed into perovskite oxide in the temperature range of $260{\sim}410^{\circ}C$ but XRD results showed $SrCO_3$ existed as impurity at less than $900^{\circ}C$. Electrical conductivity of membrane increased with increasing temperature but then decreased over $700^{\circ}C$ in air atmosphere ($Po_2=0.2atm$) and $600^{\circ}C$ in He atmosphere ($Po_2=0.01atm$) respectively due to oxygen loss from the crystal lattice. The oxygen permeation flux increased with increasing temperature and maximum oxygen permeation flux of $La_{0.7}Sr_{0.3}Co_{0.2}Fe_{0.8}O_{3-{\delta}$ membrane with 1.6 mm thickness was about $0.31cm^3/cm^2{\cdot}min$ at $950^{\circ}C$. The activation energy for oxygen permeation was 88.4 kJ/mol in the temperature range of $750{\sim}950^{\circ}C$. Perovskite structure of membrane was not changed after permeation test of 40 h and the membrane was stable without secondary phase change with 0.3 mol Sr addition.