Browse > Article

Preparation and Oxygen Permeation Properties of La0.07Sr0.3Co0.2Fe0.8O3-δ Membrane  

Park, Jung Hoon (Korea Institute of Energy Research, Green House Gas Research Center)
Kim, Jong Pyo (Korea Institute of Energy Research, Green House Gas Research Center)
Baek, Il Hyun (Korea Institute of Energy Research, Green House Gas Research Center)
Publication Information
Applied Chemistry for Engineering / v.19, no.5, 2008 , pp. 477-483 More about this Journal
Abstract
$La_{0.7}Sr_{0.3}Co_{0.2}Fe_{0.8}O_{3-{\delta}$ oxide was synthesized by a citrate method and a typical dense membrane of perovskite oxide has been prepared using as-prepared powder by pressing and sintering at $1300^{\circ}C$. Precursor of $La_{0.7}Sr_{0.3}Co_{0.2}Fe_{0.8}O_{3-{\delta}$ prepared by citrate method was investigated by TGA and XRD. Metal-citrate complex in precursor was decomposed into perovskite oxide in the temperature range of $260{\sim}410^{\circ}C$ but XRD results showed $SrCO_3$ existed as impurity at less than $900^{\circ}C$. Electrical conductivity of membrane increased with increasing temperature but then decreased over $700^{\circ}C$ in air atmosphere ($Po_2=0.2atm$) and $600^{\circ}C$ in He atmosphere ($Po_2=0.01atm$) respectively due to oxygen loss from the crystal lattice. The oxygen permeation flux increased with increasing temperature and maximum oxygen permeation flux of $La_{0.7}Sr_{0.3}Co_{0.2}Fe_{0.8}O_{3-{\delta}$ membrane with 1.6 mm thickness was about $0.31cm^3/cm^2{\cdot}min$ at $950^{\circ}C$. The activation energy for oxygen permeation was 88.4 kJ/mol in the temperature range of $750{\sim}950^{\circ}C$. Perovskite structure of membrane was not changed after permeation test of 40 h and the membrane was stable without secondary phase change with 0.3 mol Sr addition.
Keywords
$La_{0.7}Sr_{0.3}Co_{0.2}Fe_{0.8}O_{3-{\delta}$ membrane; electrical conductivity; oxygen permeation; stability;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 C. Y. Tsai, A. G. Dixon, Y. H. Ma, W. R. Moser, and M. R. Pascucci, J. Am. Ceram. Soc., 81, 1437 (1998)   DOI   ScienceOn
2 X. Qi, Y. S. Lin, and S. L. Swartz, Ind. Eng. Chem. Res., 39, 646 (2000)   DOI   ScienceOn
3 A. J. Burggraaf and J. H, M. Bouwmeester, Fundamentals of Inorganic Membrane Science and Technology, ed. A. J. Burggraaf and L. Cot, 4, 435, Elsevier, Amsterdam (1996)
4 J. H. Park and S. D. Park, Korean J. Chem. Eng., 24, 897 (2007)   DOI
5 K. Thambimuthu, M. Soltanieh, and J. C. Abanades, IPCC Special Report on Carbon dioxide Capture and Storage, ed. O. Davidson, B. Metz, 1, 6, Cambridge University Press London (2005)
6 Y. Teraoka, T. Nobunaga and N. Yamazoe, Chem. Lett., 503 (1988)
7 J. H. Park, J. P. Kim, H. T. Kwon, and K. J. Soo, Desalination, 233, 73 (2008)   DOI   ScienceOn
8 K. R. Patent 10-2007-0130276 (2007)
9 C.-F. Kao and W.-D. Yang, Appl. Organometal. Chem., 13, 383 (1999)   DOI   ScienceOn
10 S. Kim, Y. L. Yang, R. Christoffersen, and A. J. Jacobson, Solid State Ionics, 104, 57 (1997)   DOI   ScienceOn
11 S. Li, W. Jin, P. Huang, N. Xu, J. Shi, Y. S. Lin, M. Z. C. Hu, and E. A. Payzant, Ind. Eng. Chem. Res., 38, 2963 (1999)   DOI   ScienceOn
12 J. W. Stevenson, T. R. Armstrong, R. D. Carneim, L. R. Pederson, and W. J. Weber, J. Electrochem. Soc., 143, 2722 (1996)   DOI