• 제목/요약/키워드: Sintering Atmosphere

검색결과 439건 처리시간 0.027초

Fe-TiC 복합재료 분말의 상압소결과 방전플라즈마소결 (Pressureless Sintering and Spark-Plasma Sintering of Fe-TiC Composite Powders)

  • 이병훈;배상원;배선우;;김지순
    • 한국분말재료학회지
    • /
    • 제22권4호
    • /
    • pp.283-288
    • /
    • 2015
  • Two sintering methods of a pressureless sintering and a spark-plasma sintering are tested to densify the Fe-TiC composite powders which are fabricated by high-energy ball-milling. A powder mixture of Fe and TiC is prepared in a planetary ball mill at a rotation speed of 500 rpm for 1h. Pressureless sintering is performed at 1100, 1200 and $1300^{\circ}C$ for 1-3 hours in a tube furnace under flowing argon gas atmosphere. Spark-plasma sintering is carried out under the following condition: sintering temperature of $1050^{\circ}C$, soaking time of 10 min, sintering pressure of 50 MPa, heating rate of $50^{\circ}C$, and in a vacuum of 0.1 Pa. The curves of shrinkage and its derivative (shrinkage rate) are obtained from the data stored automatically during sintering process. The densification behaviors are investigated from the observation of fracture surface and cross-section of the sintered compacts. The pressureless-sintered powder compacts show incomplete densification with a relative denstiy of 86.1% after sintering at $1300^{\circ}C$ for 3h. Spark-plasma sintering at $1050^{\circ}C$ for 10 min exhibits nearly complete densification of 98.6% relative density under the sintering pressure of 50 MPa.

Suppression of Abnormal Grain Growth in Barium Titanate by Atmosphere Control

  • Lee, Byoung-Ki;Chung, Sung-Yoon;Jung, Yang-Il;Suk-Joong L. Kang
    • 한국분말재료학회지
    • /
    • 제8권2호
    • /
    • pp.131-135
    • /
    • 2001
  • The ferroelectric properties of barium titanate strongly depend on its microstructure, in particular, grain size and distribution. During sintering, $BaTiO_3$ usually exhibits abnormal grain growth, which deteriorates considerably the ferroelectric properties. A typical technique to suppress the abnormal grain growth is the addition of dopants. Dopant addition, however, affects the ferroelectric properties and thus limits the application of $BaTiO_3$. Here, we report a simple but novel technique to prevent the abnormal grain growth of $BaTiO_3$ and to overcome the limitation of dopant use. The technique consists of stepwise sintering in a reducing atmosphere and in an oxidizing atmosphere. The materials prepared by the present technique exhibit uniform grain size and high dielectric properties. The technique should provide opportunities of having $BaTiO_3$-based materials with superior ferroelectric properties.

  • PDF

Preparation of Low Density Ceramic Supporter from Coal Fly Ash

  • Yeon Hwang;Lee, Hyo-Sook;Lee, Woo-Chul
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.605-609
    • /
    • 2001
  • Low density ceramic supporter was prepared by using fly ash as a starting material for the application to the biological aerated filter (BAF) system, and the effect of additives and sintering atmosphere on the apparent and bulk density of the carrier was examined. Borax, Na$_2$O and glass powders were added to produce liquid phase. The density of the supporter decreased as the amount of borax increased. The bulk density of 0.79 g/㎤ and the apparent density of 1.10 g/㎤ were obtained when the fly ash with 15% of borax was sintered at 116$0^{\circ}C$ for 15 minutes. The density also decreased as the plate glass powders past through 22${\mu}{\textrm}{m}$ size were mixed. When the fly ash with 12% of grass powder was sintered at 128$0^{\circ}C$ for 10 minutes, the bulk and apparent density were 0.90g/㎤ and 1.00 g/㎤, respectively. Apparent density of 1.6~1.8g/㎤ was obtained when the fly ash was sintered at 120$0^{\circ}C$ in a weak reducing atmosphere. By maintaining the reducing atmosphere and sintering at a high heating rate, the liquid phase was farmed from the reduced composition of fly ash. This resulted in the formation of closed pores that enabled the low apparent density.

  • PDF

액상소결 시의 β-SiC의 입자성장 방지 (Prevention of Grain Growth during the Liquid-Phase Assisted Sintering of β-SiC)

  • 길건영;노비얀토 알피안;한영환;윤당혁
    • 한국세라믹학회지
    • /
    • 제47권6호
    • /
    • pp.485-490
    • /
    • 2010
  • In our previous studies, continuous SiC fiber-reinforced SiC-matrix composites ($SiC_f$/SiC) had been fabricated by two different slurry infiltration methods: vacuum infiltration and electrophoretic deposition (EPD). 12 wt% of $Al_2O_3-Y_2O_3$-MgO with respect to SiC powder was used as additives for liquid-phase assisted sintering. After hot pressing at $1750^{\circ}C$ under 20 MPa for 2 h in Ar atmosphere, a high composite density could be achieved for both cases, whereas the problems such as large grain size and non-uniform distribution of liquid phase were observed, which was resulted in the relatively poor mechanical properties of composites. Therefore, efforts have been made to reduce the grain growth during the sintering, including the optimization for hot pressing condition and utilization of spark plasma sintering using a SiC monolith. Based on the results, spark plasma sintering was found to be effective method in decreasing the amount of sintering additive, time and grain growth, which will be explained in comparison to the results of hot pressing in this paper.

(Fe, TiH2, C) 혼합 분말로부터 제조된 Fe-30 wt% TiC 복합재료 분말의 소결 (Sintering of Fe-30 wt% TiC Composite Powders Fabricated from (Fe, TiH2, C) Powder Mixture)

  • 이병훈;김지순
    • 한국분말재료학회지
    • /
    • 제22권5호
    • /
    • pp.356-361
    • /
    • 2015
  • Fe-30 wt% TiC composite powders are fabricated by in situ reaction synthesis after planetary ball milling of (Fe, $TiH_2$, Carbon) powder mixture. Two sintering methods of a pressureless sintering and a spark-plasma sintering are tested to densify the Fe-30 wt% TiC composite powder compacts. Pressureless sintering is performed at 1100, 1200 and $1300^{\circ}C$ for 1-3 hours in a tube furnace under flowing argon gas atmosphere. Spark-plasma sintering is carried out under the following condition: sintering temperature of $1050^{\circ}C$, soaking time of 10 min, sintering pressure of 50 MPa, heating rate of $50^{\circ}C/min$, and in a vacuum of 0.1 Pa. The curves of shrinkage and its derivative (shrinkage rate) are obtained from the data stored automatically during sintering process. The densification behaviors are investigated from the observation of fracture surface and cross-section of the sintered compacts. The pressureless-sintered powder compacts are not densified even after sintering at $1300^{\circ}C$ for 3 h, which shows a relative denstiy of 66.9%. Spark-plasma sintering at $1050^{\circ}C$ for 10 min exhibits nearly full densification of 99.6% relative density under the sintering pressure of 50 MPa.