• Title/Summary/Keyword: Sintered density

Search Result 1,250, Processing Time 0.03 seconds

SINTERED $Al_{2}O_{3}$-TiC SUBSTRATE FOR THIN FILM MAGNETIC HEAD

  • Nakano, Osamu;Hirayama, Takasi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1998.04b
    • /
    • pp.6-6
    • /
    • 1998
  • In 1957, the first magnetic disk drive compatible with a movable head was introduced as an external file memory device for computer system. Since then, magnetic disks have been improved by increasing the recording density, which has brought about the development of a high performance thin film magnetic head. The thin film magnetic head has a magnetic circuit on a ceramic substrate using IC technology. The physical property of the substrate material is very important because it influences the tribology of head/disk interface and also manufacturing process of the head. $Al_{2}O_{3}$-TiC ceramics, so called ALTIC, is known to be one of the best substrate materials which satisfies this property requirement. Even though the head is not in direct contact with the disk, frequent instantaneous contacts are unavoidable due to its high rotating speed and the close gap between them. This may cause damage in the magnetic recording media and, thus, it is very important that the magnetic head has a good wear resistance. $Al_{2}O_{3}$-TiC ceramics has an excellent tribological property in head/disk interface. Manufacturing process of thin film head is similar to that of IC, which requires extremely smooth and flat surface of the substrate. The substrate must be readily sliced into the heads without chipping. $Al_{2}O_{3}$-TiC ceramics has excellent machineability and mechanical properties. $Al_{2}O_{3}$-TiC ceramics was first developed at Nippon Tungsten Co. as cutting tool materials in 1968, which was further developed to be used as the substrate materials for thin film head in collaboration with Sumitomo Special Metals Co., Ltd. in 1981. Today, we supply more than 60% of the substrates for thin film head market in the world. In this paper, we would like to present the sintering process of $Al_{2}O_{3}$-TiC ceramics and its property in detail.

  • PDF

Numerical simulation of dimensional changes during sintering of tungsten carbides compacts

  • Bouvard, D.;Gillia, O.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1997.10a
    • /
    • pp.7-7
    • /
    • 1997
  • During sintering of very porous green bodies, as obtained by compaction of hard powders - such as tungsten carbide or ceramics - or by injection moulding, important shrinkage occurs. Due to heterogeneous green density field, gravity effects, friction on the support, thermal gradients, etc., this shrinkage is often non-uniform, which' may induce significant shape changes. As the ratio of compact dimension to powder size is very high, the mechanics of continuum is relevant to model such phenomena. Thus numerical techniques, such as the finite element method can be used to simulate the sintering process and predict the final shape of the sintered part. Such type of simulation has much been developed in the last decade firstly for hot isostatic pressing and next for die compaction. Finite element modelling has been recently applied to free sintering. The simulation of sintering should be based on constitutive equations describing the thermo-mechanical behaviour of the material under any state of stress and any temperature which may arise within the sintering body. These equations can be drawn either from experimental data or from micromechanical models. The experiments usually consist in free sintering and sinter-forging tests. Indeed applying more complex loading conditions at high temperature under controlled atmosphere is delicate. Micromechanical models describe the constitutive behaviour of aggregates of spheres from the deformation of two-sphere contact either by viscous flow or grain boundary diffusion. Such models are not able to describe complex microstructure and mechanisms as observed in real materials but they can give some basic information on the formulation of constitutive equations. Practically both experimental and theoretical approaches can be coupled to identify the constitutive equations. Such procedure has been performed for modelling the sintering of compacts obtained by die pressing of a mixture of tungsten carbide and cobalt powders. The constitutive behaviour of this material during sintering has been described by a linear viscous constitutive model, whose functions have been fitted from results of free sintering and sinter-forging experiments. This model has next been introduced in ABAQUS finite element code to simulate the sintering of heterogeneous green compacts of various geometries at constant temperature. Examples of simulations are shown and compared with experiments.

  • PDF

The Effect of Ti Powder addition on Compaction Behavior of TiO2 Nano Powder (Ti 분말 첨가가 TiO2 나노 분말의 성형성에 미치는 영향)

  • Park, Jin-Sub;Kim, Hyo-Seob;Lee, Ki-Seok;Lee, Jeong-Goo;Rhee, Chang-Kyu;Hong, Soon-Jik
    • Journal of Powder Materials
    • /
    • v.16 no.3
    • /
    • pp.223-230
    • /
    • 2009
  • The compaction response of $TiO_2$ nano powders with an addition of Ti powders prepared by magnetic pulsed compaction and subsequent sintering processes was investigated. All kinds of different bulk exhibited an average shrinkage of about 12% for different MPCed pressure and sintering temperature, which were approximately 50% lower than those fabricated by general process (20%) and a maximum density of around 92.7% was obtained for 0.8GPa MPCed pressure and $1400^{\circ}C$ sintering temperature. The addition of Ti powder induced an increase in the formability and hardness of the sintered $TiO_2$. But the lower densities were obtained on sintering with addition of over 10 (wt%) Ti powder due to generation of crack during sintering. Subsequently it was verified that the optimum compaction pressure in MPC and sintering temperature were 0.8GPa and $1400^{\circ}C$, respectively.

A Study on the Mechanical Properties of Al2O3 Cutting Tools by DLP-based 3D Printing (DLP 기반 3D 프린팅으로 제조된 Al2O3 절삭공구의 기계적 물성 연구)

  • Lee, Hyun-Been;Lee, Hye-Ji;Kim, Kyung-Ho;Kim, Kyung-Min;Ryu, Sung-Soo;Han, Yoonsoo
    • Journal of Powder Materials
    • /
    • v.26 no.6
    • /
    • pp.508-514
    • /
    • 2019
  • In the development of advanced ceramic tools, material improvements and design freedom are critical in improving tool performance. However, in the die press molding method, many factors limit tool design and make it difficult to develop innovative advanced tools. Ceramic 3D printing facilitates the production of prototype samples for advanced tool development and the creation of complex tooling products. Furthermore, it is possible to respond to mass production requirements by reflecting the needs of the tool industry, which can be characterized by small quantities of various products. However, many problems remain in ensuring the reliability of ceramic tools for industrial use. In this study, alumina inserts, a representative ceramic tool, was manufactured using the digital light process (DLP), a 3D printing method. Alumina inserts prepared by 3D printing are pressurelessly sintered under the same conditions as coupon-type specimens prepared by press molding. After sintering, a hot isostatic pressing (HIP) treatment is performed to investigate the effects of relative density and microstructure changes on hardness and fracture toughness. Alumina inserts prepared by 3D printing show lower relative densities than coupon specimens prepared by powder molding but indicate similar hardness and higher fracture toughness values.

Optimization of Metal Powder Particle Size Distribution for Powder Bed Fusion Process via Simulation (금속 Powder Bed Fusion 적층제조 기술의 분말 입도 최적화를 위한 시뮬레이션)

  • Lee, Hwaseon;Kim, Dae-Kyeom;Kim, Young Il;Nam, Jieun;Son, Yong;Kim, Taek-Soo;Lee, Bin
    • Journal of Powder Materials
    • /
    • v.27 no.1
    • /
    • pp.44-51
    • /
    • 2020
  • Powder characteristics, such as density, size, shape, thermal properties, and surface area, are of significant importance in the powder bed fusion (PBF) process. The powder required is exclusive for an efficient PBF process. In this study, the particle size distribution suitable for the powder bed fusion process was derived by modeling the PBF product using simulation software (GeoDict). The modeling was carried out by layering sintered powder with a large particle size distribution, with 50 ㎛ being the largest particle size. The results of the simulation showed that the porosity decreased when the mean particle size of the powder was reduced or the standard deviation increased. The particle size distribution of prepared titanium powder by the atomization process was also studied. This study is expected to offer direction for studies related to powder production for additive manufacturing.

A Study on Broad-Band Design of Electromagnetic Wave Absorber in Ferrite Cylinder Insertion Type (페라이트 기둥 삽입형 전파흡수체의 광대역 설계에 관한 연구)

  • 이창우;김동일
    • Journal of the Korean Institute of Navigation
    • /
    • v.23 no.1
    • /
    • pp.23-28
    • /
    • 1999
  • With a rapid progress in electronic industry we enjoy various conveniences of life. As many kinds of information equipments are supplied even to most of individuals as to be called an information society, we are exchanging much information with one another surprisingly. Consequently the occupation density of microwave frequency band is highly increased, and electromagnetic environment is getting more seriously bad. It often gives fatal blow to even human life and thus becomes serious social problems. Electromagnetic wave absorbers for anechoic chamber are needed to broaden the effective frequency bandwidth, reduce the thickness, and decrease the weight. There are various absorbers proposed for the above conditions, but they could not decisively solve it the alone requirements. The Electromagnetic wave absorber made by a conventional ferrite tile has, for example, broadened the useful frequency bandwidth by the way of forming air layer(practically use urethane foam, etc.) on the ferrite tile. Therefore, an air layer is formed between a reflection plate and a sintered Ni-Zn ferrite tile of 7 mm in thickness, which has reflectivity less than -20 dB from 30 MHz to 400 MHz in bandwidth. Accordingly, in this paper, a broadened electromagnetic wave absorber are designed, which has the reflection characteristics less than -20 dB from 30 MHz to 6,000 MHz in the bandwidth. Then we achieved the goal by design the inserting square Ferrite Cylinders with the thickness less than 17.5 mm on existing grid type Ferrite absorber. The purpose of this research is on the development of very wide-band electromagnetic absorber for a universal anechoic chamber for measuring radiated electromagnetic wave or immunity of electronic equipments, GTEM-cell, wall material for preventing TV ghost, etc.

  • PDF

Mechanical, Electrical Properties and Manufacture of the $\beta$-SiC-$ZrB_2$ Electroconductive Ceramic Composites by Pressureless Sintering (무가압소결한 $\beta$-SiC-$ZrB_2$계 도전성 복합체의 제조 및 기계적, 전기적 특성)

  • Shin, Yong-Deok;Kwon, Ju-Sung
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.2
    • /
    • pp.98-103
    • /
    • 1999
  • The effect of $Al_2O_3$ additives to $\beta-SiC+39vol.%ZrB_2$ electroconductive ceramic composites by pressureless sintering on microstructural, mechanical and electrical properties were investigated. The $\beta-SiC+39vol.%ZrB_2$ ceramic composites were pressureless sintered by adding 4, 8, 12wt.% $Al_2O_3$ powder as a liquid forming additives at $1950^{\cire}C$ for 1h. Phase analysis of composites by XRD revealed mostly of $\alpha-SiC(6H), ZrB_2$ and weakly $\alpha-SiC(4H), \beta-SiC (15R)$ phase. The relative density of composites was lowered by gaseous products of the result of reaction between \beta-SiC and Al_2O_3$, therefore, porosity was increased with increasing $Al_2O_3$ contents, and showed the maximum value of 1.4197MPa.$m^{1/2}$ for composite with 4wt.% $Al_2O_3$ additives. The electrical resistivity of $\beta-SiC+39vol.%ZrB_2$ electroconductive ceramic composite was increased with increasing $Al_2O_3$ contents, and showed positive temperature coefficient resistance (PTCR) in the temperature range of $25^{\cire}C$ to $700^{\cire}C$.

  • PDF

The Power Loss Characteristics of Mn-Zn Ferrites at MHz Region with Sintering Condition (소성조건에 따른 MHz 대역의 Mn-Zn ferrite 전력손실 특성)

  • Suh J.J.;Song B.M
    • Resources Recycling
    • /
    • v.12 no.6
    • /
    • pp.26-31
    • /
    • 2003
  • The power loss characteristics of Mn-Zn ferrite were observed with the sintering temperature. In case of $1150 ^{\circ}C$ sintering, the core loss increased with measuring temperature, and does not have minimum value at the point where the magnetocrystalline anisotropy be 'zero'. This reason mainly due to the change of core loss mechanism with grain size which affects residual loss. The grain size and sintered density slightly increased with equilibrium oxygen partial pressure at$ 1150 ^{\circ}C$ sintering. The resistivity and initial permeability showed no significance with atmosphere, these results due to complex effect of $Fe^{2+}$ concentration and microstructure change. The core loss at $100^{\circ}C$ decreased as the equilibrium oxygen partial pressure increased.e increased.

Separation of Neodymium from NdEeB Permanent Magnetic Scrap (NdFeB계 영구자석 스크랩으로부터 네오디뮴의 분리회수)

  • Yoon Ho-Sung;Kim Chul-Joo;Lee Jin-Yeung;Kim Sung-Don;Kim Joon-Soo;Lee Jae-Chun
    • Resources Recycling
    • /
    • v.12 no.6
    • /
    • pp.57-63
    • /
    • 2003
  • In this study, the separation of neodymium was investigated from NdFeB permanent magnet scrap. Decomposition and leach-ing process of NdFeB permanent magnet scrap by oxidation roasting and sulfuric arid leaching were examined. Neodymium could be separated from iron by double salt precipitation using sodium sulfate. The optimum conditions established for decom-position and leaching are as follows: oxidation roasting temperature is $500^{\circ}C$ for sintered scrap and $700^{\circ}C$ for bonded scrap, concentration of sulfuric acid in leaching solution is 2.0 M, leaching temperature and time is $50^{\circ}C$ and 2 hrs, and pulp density is 15%. The leaching yield of neodymium and iron was 99.4% and 95.7% respectively. The optimum condition for separation of neodymium by double-salt precipitation was 2 equivalents of sodium sulfate and $50^{\circ}C$ The yield of neodymium was above 99.9%.

EFFECT OF ADDED Si ON DENSIFICATION OF Ni-AI INTERMETALLIC COATING ON SPHEROIDAL GRAPHITE CAST IRON SUBSTRATES

  • Kim, Tetsuro ata;Keisuke Uenishi;Akira Ikenaga;Kojiro F. Kobayashi
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.726-731
    • /
    • 2002
  • Reaction synthesis is a process to form ceramics, intermetallics and their composites from elemental powder mixture. Application of this process to a surface modification techniques has a possibilities to enable the process at a lower temperature or for a shorter time, although synthesized materials are likely to include voids and unreacted elements. This paper intend to examine the effect of Si addition to the mixture of Al and Ni on the densification of synthesized Ni-Al intermetallic compounds and to evaluate the surface properties of obtained coatings. By the Si addition, exothermic reaction temperature to form Ni-Al intermetallic was lowered to be below the melting point of Al. Si soluted $Al_3$Ni$_2$, $Al_3$Ni and $Al_{6}$Ni$_3$Si were mainly formed in the coating layer when powder mixture was heated to 973K for 300s. Besides, densification was enhanced by increasing hot press pressure, Si additions and heating rate. When the composition of eutectic Al-Si reaches 78%, void ratio of sintered compact reduced to 0.4%. It is caused by higher flowability of Al-Si liquid phase generated and its infiltration into the void. Since the hardness of NiAl(Si) compound (about 600HV) formed in the coating layer is higher than that of Ni-Al compound (about 400HV), coating layer with high density and superior wear property is obtained by hot press using reaction synthesis from Al-Ni-Si powder mixture.

  • PDF