• Title/Summary/Keyword: Sintered alloy

Search Result 238, Processing Time 0.027 seconds

Hardenability of Low Alloy Sintered Mn Steels

  • Zendrona, Marianna;Molinari, Alberto;Girardini, Luca
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.834-835
    • /
    • 2006
  • Manganese is an alloying element that improves the hardenability of steels. It could be a valid substitute in sintered steels, increasing mechanical properties. The hardenability of three low alloy Mn steels was studied to establish the influence of manganese on the heat treatments. The Grossmann approach was adopted, which uses cylinders with different diameters to induce different gradients of cooling rate in the cross section. The correlation of microstructure and microhardness to the actual cooling rate makes the results independent on the process parameters and applicable to each industrial condition, once the actual cooling rate in the parts is known.

  • PDF

OPTIMIZATION OF VARIABLES AFFECTING CORROSION RESISTANCE OF VACUUM SINTERED STAINLESS STEELS

  • Klar, Erhard;Samal, Prasan
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1995.11a
    • /
    • pp.9-9
    • /
    • 1995
  • MATERIAL AND PROCESS VARIABLES THAT STRONGLY AFFECT THE CORROSION RESISTANCE OF PA4 STAINLESS STEELS, INCLUDE : ALLOY COMPOSITION, POWDER CLEANLINESS, NITROGEN, OXYGEN AND GARBON CONTENTS, CHROMIUM DEPLETION DUE TO SURFACE EVAPORATION AND SINTERED DENSITY. THE OPTIMUM PROCESS PARAMETERS FOR DELUBRICATION AND SINTERING THAT RESULT IN LOWEST LEVELS OF NITROGEN, OXYGEN AND CARBON AND MINIMUM LEVELS OF CHROMIUM DEPLETION WILL BE PRESENTED, FOR A NUMBER OF AUSTENTIC AND FERRITIC STAINLESS STEELS. THE EFFECT OF SINTERED DENSITY ON THE CORROSION RESISTANCE OF BOTH AUSTENITIC AND FERRITIC GRADES OF STAINLESS STEEL WILL ALSO BE COVERED.

  • PDF

Comparison of the mechanical properties and microstructures of fractured surface for Co-Cr alloy fabricated by conventional cast, 3-D printing laser-sintered and CAD/CAM milled techniques (주조, 3-D printing을 활용한 laser sintered 및 CAD/CAM milled 기법을 이용하여 제작된 코발트-크롬 합금의 물리적 성질 및 파절 단면 관찰 비교 연구)

  • Choi, Yun-Jung;Koak, Jai-Young;Heo, Seong-Joo;Kim, Seong-Kyun;Ahn, Jin-Soo;Park, Dong-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.2
    • /
    • pp.67-73
    • /
    • 2014
  • Purpose: The purpose of present study is to compare mechanical properties and microstructural characteristics of fractured surface for cast, 3-D printing laser sintered and CAD/CAM milled cobalt-chromium (Co-Cr) alloy specimens and to investigate whether laser sintered technique is adequate for dental applications. Materials and methods: Thirty six flat disc shape Co-Cr alloy specimens were fabricated for surface hardness test and divided into three groups according to the manufacturing methods; 12 specimens for casting (n=12), 12 specimens for laser sintered technology (n=12) and 12 specimens for milled technology (n=12). Twelve dumbbell shape specimens for each group were also fabricated for a tensile test. Statistical comparisons of the mechanical properties for the alloys were performed by Kruskal-Wallis test followed by Mann-Whitney and Bonferroni test. The microstructural characteristics of fractured surfaces were examined using SEM. Results: There were significant differences in the mean Vickers hardness values between all groups and the cast specimen showed the highest (455.88 Hv) while the CAD/CAM milled specimen showed the lowest (243.40 Hv). Significant differences were found among the three groups for ultimate tensile strength, 0.2% yield stress, elongation, and elastic modulus. The highest ultimate tensile strength value (1442.94 MPa) was shown in the milled group and the highest 0.2% yield strength (1136.15 MPa) was shown in the laser sintered group. Conclusion: Different manufacturing methods influence the mechanical properties and microstructure of the fractured surfaces in Co-Cr alloys. The cast Co-Cr alloy specimens showed the highest Vickers hardness, and the CAD/CAM milled specimens revealed the highest tensile strength value. All alloys represent adequate mechanical properties satisfying the ISO standards of dental alloy.

Improvement of Magnetic Properties of Nd-Fe-B Type Sintered Magnet (Nd-Fe-B계 소결자석의 자기적특성 향상 연구)

  • Kim, Yoon-B.;Jung, W.S.;Jeung, W.Y.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.2
    • /
    • pp.57-63
    • /
    • 2002
  • In order to increase the magnetic properties of a Nd-Fe-B sintered magnet, the general factors including particle size and its distribution, volume fraction of Nd$_2$Fe$_{14}$B phase, degree of alignment of Nd$_2$Fe$_{14}$B grain, oxygen content and grain size etc. should be optimized by controlling the composition of Nd-Fe-B alloy as well as the manufacturing process. In this study, fabrication of the Nd-Fe-B sintered magnet was carried out in a laboratory scale by controlling the composition of Nd-Fe-B alloy and the manufacturing process. The optimum milling condition was found by investigating the milling media, milling time and ball size. The addition of FeGa was effective to increase the coercivity of the Nd-Fe-B sintered magnet. A remanence of 14.4 kG, a coercivity of 9.4 kOe and a maximum energy product of 47 MGOe were obtained from the sintered magnet.

Characteristics of Mg97Y2Zn1 Alloy Compacts Prepared by Spark Plasma Sintering Process (방전플라즈마 소결공법을 이용한 Mg97Y2Zn1 합금 소결체의 특성평가)

  • Hong, Ji-Min;Son, Hyeon-Taek;Chang, Se-Hun;Lee, Jae-Seoul;Cha, Yong-Hun;Oh, Ik-Hyun
    • Korean Journal of Materials Research
    • /
    • v.17 no.6
    • /
    • pp.337-341
    • /
    • 2007
  • [ $Mg_{97}Zn_1Y_2$ ] alloy powders were prepared from gas atomization process, followed by consolidation using spark plasma sintering (SPS) process. The atomized $Mg_{97}Zn_1Y_2$ alloy particles were entirely spherical in shape and dendritic microstructure. The compacts sintered by SPS process had theoretical density more than 99%. The compressive yield strength was decreased as sintering temperature increased. It was found that the compressive strength showed the maximum value of 303MPa at the $Mg_{97}Y_2Zn_1$ specimen sintered under load of 255 MPa at $350^{\circ}C$.

Effect of Powder Synthesis Method on the Microstructure of Oxide Dispersion Strengthened Fe-Cr-Al Based Alloys (Fe-Cr-Al 기 산화물 분산강화 합금의 미세조직에 미치는 분말제조 공정 영향)

  • Park, Sung Hyun;Oh, Sung-Tag
    • Korean Journal of Materials Research
    • /
    • v.27 no.9
    • /
    • pp.507-511
    • /
    • 2017
  • An optimum route to fabricate oxide dispersion strengthened ferritic superalloy with desired microstructure was investigated. Two methods of high energy ball milling or polymeric additive solution route for developing a uniform dispersion of $Y_2O_3$ particles in Fe-Cr-Al-Ti alloy powders were compared on the basis of the resulting microstructures. Microstructural observation revealed that the crystalline size of Fe decreased with increases in milling time, to values of about 15-20 nm, and that an FeCr alloy phase was formed. SEM and TEM analyses of the alloy powders fabricated by solution route using yttrium nitrate and polyvinyl alcohol showed that the nano-sized Y-oxide particles were well distributed in the Fe based alloy powders. The prepared powders were sintered at 1000 and $1100^{\circ}C$ for 30 min in vacuum. The sintered specimen with heat treatment before spark plasma sintering at $1100^{\circ}C$ showed a more homogeneous microstructure. In the case of sintering at $1100^{\circ}C$, the alloys exhibited densified microstructure and the formation of large reaction phases due to oxidation of Al.

The Development of Aluminium Alloy Piston by Powder Forging Method (분말단조법에 의한 알루미늄 합금 피스톤 개발)

  • Kang, Dae-Yong;Park, Jong-Ok;Kim, Kil-Jun;Kim, Young-Ho;Cho, Jin-Rae;Lee, Jong-Heon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.87-93
    • /
    • 2000
  • Powder Forging technology is being developed rapidly because of its economic merits and the possibility of lightening parts by replacing steel parts with aluminum ones especially in automotive parts manufacturing. Recently Powder Forging process is widely used for manufacturing primary mechanical parts as a combined technology of P/M and precision hot forging. This paper describes the process conditions for the powder forging of Aluminium alloy piston. For example powder alloy design preform design by FEM simulation cold of compaction of specimens and preform sintering of preform powder forging process. The characteristics of sintered compaction of specimens and preform sintering of preform powder forging process. The characteristics of sintered products and final forged piston ones are investigated with tensile strength hardness ductility and so on. Eventually its results prove the improve mechanical properties of the piston produced by powder forging.

  • PDF

Effect of Milling Time on the Microstructure and Mechanical Properties of Ta20Nb20V20W20Ti20 High Entropy Alloy (Ta20Nb20V20W20Ti20 하이엔트로피 합금의 미세조직 및 기계적 특성에 미치는 밀링 시간의 영향)

  • Song, Da Hye;Kim, Yeong Gyeom;Lee, Jin Kyu
    • Journal of Powder Materials
    • /
    • v.27 no.1
    • /
    • pp.52-57
    • /
    • 2020
  • In this study, we report the microstructure and characterization of Ta20Nb20V20W20Ti20 high-entropy alloy powders and sintered samples. The effects of milling time on the microstructure and mechanical properties were investigated in detail. Microstructure and structural characterization were performed by scanning electron microscopy and X-ray diffraction. The mechanical properties of the sintered samples were analyzed through a compressive test at room temperature with a strain rate of 1 × 10-4 s-1. The microstructure of sintered Ta20Nb20V20W20Ti20 high-entropy alloy is composed of a BCC phase and a TiO phase. A better combination of compressive strength and strain was achieved by using prealloyed Ta20Nb20V20W20Ti20 powder with low oxygen content. The results suggest that the oxide formed during the sintering process affects the mechanical properties of Ta20Nb20V20W20Ti20 high-entropy alloys, which are related to the interfacial stability between the BCC matrix and TiO phase.