• 제목/요약/키워드: Sinorhizobium meliloti

검색결과 8건 처리시간 0.03초

Sinorhizobium meliloti 유래 Mannitol Dehydrogenase 유전자의 클로닝 및 대장균 내 발현과 효소특성 규명 (Molecular Cloning and Gene Expression of Sinorhizobium meliloti Mannitol Dehydrogenase in Escherichia coli, and Its Enzymatic Characterization)

  • 장명운;박정미;김민정;이소원;강정현;김태집
    • 한국미생물·생명공학회지
    • /
    • 제41권2호
    • /
    • pp.153-159
    • /
    • 2013
  • Sinorhizobium meliloti 1021 (KCTC 2353) 유전체로부터 mannitol dehydrogenase (SmMDH)로 추정되는 유전자를 클로닝하고, 대장균에서 대량 발현하였다. 이 유전자는 494개의 아미노산(약 54 kDa)을 암호화하는 1,485 bp의 염기로 구성되며, 기존에 보고된 long-chain dehydrogenase/reductase 계열 MDH 효소들과 약 35-55%의 아미노산 서열상동성을 나타내었다. 재조합 SmMDH의 최적 반응온도는 $40^{\circ}C$이며, pH 7.0의 조건에서 최대의 D-fructose 환원활성, 그리고 pH 9.0에서 최대의 D-mannitol 산화활성을 보였다. 특히, 이 효소는 $NAD^+/NADH$ 조효소의 존재 하에서 산화 환원 활성을 나타내며, $NAD^+/NADPH$는 조효소로 이용하지 못하였다. 결론적으로 SmMDH는 전형적인 $NAD^+/NADH$-의존형 mannitol dehydrogenase (EC 1.1.1.67)임을 확인하였다.

Production of Coenzyme $Q_{10}$ by Recombinant E. coli Harboring the Decaprenyl Diphosphate Synthase Gene from Sinorhizobium meliloti

  • Seo Myung-Ji;Im Eun-Mi;Hur Jin-Haeng;Nam Jung-Yeon;Hyun Chang-Gu;Pyun Yu-Ryang;Kim Soon-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권6호
    • /
    • pp.933-938
    • /
    • 2006
  • Decaprenyl diphosphate synthase (DPS) is the key enzyme for the production of coenzyme $Q_{10}$ ($CoQ_{10}$). A dps gene from Sinorhizobium meliioti KCCM 11232 (IFO 14782) was isolated by PCR and then cloned in Escherichia coli. DNA sequencing analysis revealed an open reading frame of 1,017 bp encoding a 338-amino-acid protein. The protein was identical at the 98% level to the putative octaprenyl diphosphate synthase (IspB) of S. meliloti 1021. The deduced amino acid sequence included the DDxxD domains conserved in the majority of the prenyl diphosphate synthases. Heterologous expression in E. coli BL21 (DE3) was carried out, and the $CoQ_{10}$ produced was then analyzed by HPLC. E. coli BL21 (DE3) harboring the dps gene from S. melioti produced CoQ$_{10}$ in addition to endogenous coenzyme Q$_8$ (CoQ$_8$), whereas wild-type E. coli BL21 (DE3) host did not have the ability of producing CoQ$_{10}$. The results suggest that the putative dps from S. meliloti KCTC 2353 encoded the DPS.

재조합 대장균에서 MaoC를 이용한 지방산으로부터의 중간사슬길이 폴리하이드록시알칸산 생산 연구 (MaoC Mediated Biosynthesis of Medium-chain-length Polyhydroxyalkanoates in Recombinant Escherichia coli from Fatty Acid)

  • 박시재;이승환;오영훈;이상엽
    • KSBB Journal
    • /
    • 제29권4호
    • /
    • pp.244-249
    • /
    • 2014
  • Biosynthesis pathway of medium-chain-length (MCL) polyhydroxyalkanoates (PHA) from fatty acid ${\beta}$-oxidation pathway was constructed in recombinant Escherichia coli by introducing the Pseudomonas sp. 61-3 PHA synthase gene (phaC2) and the maoC genes from Pseudomonas putida, Sinorhizobium meliloti, and Ralstonia eutropha. The metabolic link between fatty acid ${\beta}$-oxidation pathway and PHA biosynthesis pathway was constructed by MaoC, which is homologous to P. aeruginosa (R)-specific enoyl-CoA hydratase (PhaJ1). When the E. coli W3110 strains expressing the phaC2 gene and one of the maoC genes from P. putida, Sinorhizobium meliloti, and Ralstonia eutropha were cultured in LB medium containing 2 g/L of sodium decanoate as a carbon source, MCL-PHA that mainly consists of 3-hydroxyhexanoate (3HHx), 3-hydroxyoctanoate (3HO) and 3-hydroxydecanoate (3HD), was produced. The monomer composition of PHA and PHA contents varied depending on MaoC employed for the production of PHA. The highest PHA content of 18.7 wt% was achieved in recombinant E. coli W3110 expressing the phaC2 gene and the P. putida maoC gene. These results suggest that MCL-PHA biosynthesis pathway can be constructed in recombinant E. coli strains from the b-oxidation pathway by employing MaoC able to supply (R)-3-hydroxyacyl-CoA, the substrate of PHA synthase.

Solubilization of Pyrimethamine, Antibacterial Drug, by Low-Molecular-Weight Succinoglycan Dimers Isolated from Shinorhizobium meliloti

  • Kim, Hwan-Hee;Kim, Kyoung-Tea;Choi, Jae-Min;Tahir, Muhammad Nazir;Cho, Eun-Ae;Choi, Young-Jin;Lee, Im-Soon;Jung, Seun-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권8호
    • /
    • pp.2731-2736
    • /
    • 2012
  • The use of pyrimethamine as antibacterial drug is limited by the poor solubility. To enhance its solubility, we prepared complexes of pyrimethamine with low-molecular-weight succinoglycan isolated from Sinorhizobium meliloti. Low-molecular-weight succinoglycans are monomers, dimers, and trimers of the succinoglycan repeating unit. The monomers and dimers were separated into their three species (M1, M2, and M3) and four fractions (D1 to D4) using chromatographic techniques, which were shown to be nontoxic. The solubility of pyrimethamine was markedly increased up to 42 fold by succinoglycan D3, where the level of its solubility enhancement was even 8-20 fold higher comparing with cyclodextrin or its derivatives. The complex formation of succinoglycan D3 with pyrimethamine was confirmed by $^1H$ nuclear magnetic resonance spectroscopy, Fourier-transform infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy, and molecular modeling studies. Herein, we suggest that the low-molecular-weight succinoglycans may be utilized as highly effective solubilizers of pyrimethamine for pharmaceutical purposes.

Agrobacterium tumefaciens 유래 인디칸 분해활성을 갖는 β-glucosidase의 분리와 특성분석 (Purification and Characterization of an Indican-hydrolyzing β-glucosidase from Agrobacterium tumefaciens)

  • 황창선;이진영;김근중
    • KSBB Journal
    • /
    • 제27권6호
    • /
    • pp.341-346
    • /
    • 2012
  • Indican (indoxyl-${\beta}$-D-glucoside) is a colorless natural compound and can be used as a precursor for the production of indigo. This production step only require an enzyme, ${\beta}$-glucosidase, that readily screened from microbial resource by using selective media supplemented with indican as a sole carbon source. Agrobacterium tumefaciens was well grown in this media and thus presumed to produce a related enzyme. The corresponding gene, encoding a protein with a calculated molecular mass of 51 kDa, was cloned and overexpressed as MBP fusion proteins. The purified enzyme was determined to be a dimer and showed the maximum activity for indican at pH 7.0 and $40^{\circ}C$. The kinetic parameters for indican, Km and Vmax, were determined to be 1.4 mM and 373.8 ${\mu}M/min/mg$, respectively. The conversion yield of indican into indigo using this enzyme was about 1.7-1.8 folds higher than that of previously isolated enzyme from Sinorhizobium meliloti. Additionally, this enzyme was able to hydrolyze various ${\beta}$-1,4 glycoside substrates.