• 제목/요약/키워드: Singular perturbation problem

검색결과 34건 처리시간 0.023초

AN INITIAL VALUE TECHNIQUE FOR SINGULARLY PERTURBED DIFFERENTIAL-DIFFERENCE EQUATIONS WITH A SMALL NEGATIVE SHIFT

  • Rao, R. Nageshwar;Chakravarthy, P. Pramod
    • Journal of applied mathematics & informatics
    • /
    • 제31권1_2호
    • /
    • pp.131-145
    • /
    • 2013
  • In this paper, we present an initial value technique for solving singularly perturbed differential difference equations with a boundary layer at one end point. Taylor's series is used to tackle the terms containing shift provided the shift is of small order of singular perturbation parameter and obtained a singularly perturbed boundary value problem. This singularly perturbed boundary value problem is replaced by a pair of initial value problems. Classical fourth order Runge-Kutta method is used to solve these initial value problems. The effect of small shift on the boundary layer solution in both the cases, i.e., the boundary layer on the left side as well as the right side is discussed by considering numerical experiments. Several numerical examples are solved to demonstate the applicability of the method.

SPLINE DIFFERENCE SCHEME FOR TWO-PARAMETER SINGULARLY PERTURBED PARTIAL DIFFERENTIAL EQUATIONS

  • Zahra, W.K.;El-Azab, M.S.;Mhlawy, Ashraf M. El
    • Journal of applied mathematics & informatics
    • /
    • 제32권1_2호
    • /
    • pp.185-201
    • /
    • 2014
  • In this paper, we construct a numerical method to solve singularly perturbed one-dimensional parabolic convection-diffusion problems. We use Euler method with uniform step size for temporal discretization and exponential-spline scheme on spatial uniform mesh of Shishkin type for full discretization. We show that the resulting method is uniformly convergent with respect to diffusion parameter. An extensive amount of analysis has been carried out to prove the uniform convergence with respect to the singular perturbation parameter. The obtained numerical results show that the method is efficient, stable and reliable for solving convection-diffusion problem accurately even involving diffusion parameter.

특이섭동을 포함한 타카기 - 수게노 형태의 비선형 시스템을 위한 새로운 샘플치 제어기의 설계기법 제안 (Sampled-Data Controller Design for Nonlinear Systems Including Singular Perturbation in Takagi-Sugeno Form)

  • 문지현;이재준;이호재
    • 한국지능시스템학회논문지
    • /
    • 제26권1호
    • /
    • pp.50-55
    • /
    • 2016
  • 본 논문은 특이섭동을 포함한 비선형 시스템을 위한 샘플치 제어 기법을 논한다. 비선형 시스템은 타카기--수게노(Takagi--Sugeno: T--S) 퍼지모델 형태로 표현됨을 가정한다. 새로운 리아푸노프 함수와 추가적인 항등식을 이용하여 선형행렬부등식 형태의 샘플치 폐루프 T--S 퍼지시스템의 점근적 안정도 조건을 제시한다. 분석결과에 대한 몇 가지 논의점을 언급한다. 모의실험에 의하여 제안된 기법의 타당성을 보인다.

Impedance Control of Flexible Base Mobile Manipulator Using Singular Perturbation Method and Sliding Mode Control Law

  • Salehi, Mahdi;Vossoughi, Gholamreza
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권5호
    • /
    • pp.677-688
    • /
    • 2008
  • In this paper, the general problem of impedance control for a robotic manipulator with a moving flexible base is addressed. Impedance control imposes a relation between force and displacement at the contact point with the environment. The concept of impedance control of flexible base mobile manipulator is rather new and is being considered for first time using singular perturbation and new sliding mode control methods by authors. Initially slow and fast dynamics of robot are decoupled using singular perturbation method. Slow dynamics represents the dynamics of the manipulator with rigid base. Fast dynamics is the equivalent effect of the flexibility in the base. Then, using sliding mode control method, an impedance control law is derived for the slow dynamics. The asymptotic stability of the overall system is guaranteed using a combined control law comprising the impedance control law and a feedback control law for the fast dynamics. As first time, base flexibility was analyzed accurately in this paper for flexible base moving manipulator (FBMM). General dynamic decoupling, whole system stability guarantee and new composed robust control method were proposed. This proposed Sliding Mode Impedance Control Method (SMIC) was simulated for two FBMM models. First model is a simple FBMM composed of a 2 DOFs planar manipulator and a single DOF moving base with flexibility in between. Second FBMM model is a complete advanced 10 DOF FBMM composed of a 4 DOF manipulator and a 6 DOF moving base with flexibility. This controller provides desired position/force control accurately with satisfactory damped vibrations especially at the point of contact. This is the first time that SMIC was addressed for FBMM.

A UNIFORMLY CONVERGENT NUMERICAL METHOD FOR A WEAKLY COUPLED SYSTEM OF SINGULARLY PERTURBED CONVECTION-DIFFUSION PROBLEMS WITH BOUNDARY AND WEAK INTERIOR LAYERS

  • CHAWLA, SHEETAL;RAO, S. CHANDRA SEKHARA
    • Journal of applied mathematics & informatics
    • /
    • 제33권5_6호
    • /
    • pp.635-648
    • /
    • 2015
  • We consider a weakly coupled system of singularly perturbed convection-diffusion equations with discontinuous source term. The diffusion term of each equation is associated with a small positive parameter of different magnitude. Presence of discontinuity and different parameters creates boundary and weak interior layers that overlap and interact. A numerical method is constructed for this problem which involves an appropriate piecewise uniform Shishkin mesh. The numerical approximations are proved to converge to the continuous solutions uniformly with respect to the singular perturbation parameters. Numerical results are presented which illustrates the theoretical results.

자동변속기의 과도토크 저감을 위한 비선형 제어기설계 (Nonlinear Control Design for Reducing Shifting Torque in Automatic Transmission)

  • Kim, D.H.;Lee, K.I.
    • 한국정밀공학회지
    • /
    • 제14권12호
    • /
    • pp.95-104
    • /
    • 1997
  • We consider controller design problem to enhance shift quality for automatic transmission. A dynamic modeling related to shifting (mainly 2-3 up-shift) is constructed and nonlinear robust controllers are designed to reduce output torque during shifting. Suggesting a new hydraulic circuit enabling the direct clutch drive, the control activity is extended and more implementable than the conventional design. The designed robust controllers overcome the unmodeled dynamics and the uncertainty embending in the system. Moreover, the dynamic effect between the clutch pressure and the PWM valve duty is considered via singular perturbation technique.

  • PDF

시이섭동기법을 이용한 모델 절감화의 오금 산정 및 관련 파라미터의 추정에 관한 연구 (A Study on Errors and Selection of Associated Parameters in Model Simplification Using Singular Perturbation Technique)

  • 천희영;박귀태;이기상
    • 대한전기학회논문지
    • /
    • 제32권2호
    • /
    • pp.43-49
    • /
    • 1983
  • In this study, model simplification problem using singular perturbation technique is considered. The correctness and errors of simplified model which is obtained by the use of this technique, depends upon the order and the time scaling factor of the simplified model But, unfortunately, there is no explicit criteria for selections of these parameters. In this paper, error equations are derived and expanded by using the useful properties of $L_2$-norm. Then, new criteria for selecting the order of the simplified model and time scaling factor with respect to error bound are suggested. Since these criteria, newly proposed in this study, have strong concern about error bound, it can be used to choose the minimum order of the simplified model and time scaling factor with respect to given error bound. Conversely, if the order of the simplified model and time scaling factor are given, the error induced by the simplification can also be computed easily.

1/4 차 능동현가계의 비선형 적응제어 (Nonlinear adaptive control of a quarter car active suspension)

  • Kim, Eung-Seok
    • 대한전기학회논문지
    • /
    • 제45권4호
    • /
    • pp.582-589
    • /
    • 1996
  • In this paper, an adaptive control problem of a hydraulic actuator for vehicle active suspension controller is divided into two parts: the inner loop controller and the outer loop controller. Inner loop controller, which is a nonlinear adaptive controller, is designed to control the force generated by the nonlinear hydraulic actuator acting under the effects of Coulomb friction. For simplicity of designing a nonlinear controller, the spool valve dynamics of a hydraulic actuator is reduced using a singular perturbation technique. The estimation error signal used to an indirect parameter adaptation is calculated without a regressor filtering. The absolute velocity of a sprung mass will be damped down by its negatively proportional term(sky-hook damper) adopted as an outer loop controller. Simulation results are presented to show the importance of controlling the actuator force and the validity of the proposed adaptive controller. (author). refs., figs. tab.

  • PDF

The Comparison of the Classical Keplerian Orbit Elements, Non-Singular Orbital Elements (Equinoctial Elements), and the Cartesian State Variables in Lagrange Planetary Equations with J2 Perturbation: Part I

  • Jo, Jung-Hyun;Park, In-Kwan;Choe, Nam-Mi;Choi, Man-Soo
    • Journal of Astronomy and Space Sciences
    • /
    • 제28권1호
    • /
    • pp.37-54
    • /
    • 2011
  • Two semi-analytic solutions for a perturbed two-body problem known as Lagrange planetary equations (LPE) were compared to a numerical integration of the equation of motion with same perturbation force. To avoid the critical conditions inherited from the configuration of LPE, non-singular orbital elements (EOE) had been introduced. In this study, two types of orbital elements, classical Keplerian orbital elements (COE) and EOE were used for the solution of the LPE. The effectiveness of EOE and the discrepancy between EOE and COE were investigated by using several near critical conditions. The near one revolution, one day, and seven days evolutions of each orbital element described in LPE with COE and EOE were analyzed by comparing it with the directly converted orbital elements from the numerically integrated state vector in Cartesian coordinate. As a result, LPE with EOE has an advantage in long term calculation over LPE with COE in case of relatively small eccentricity.

APPROXIMATION OF DERIVATIVE TO A SINGULARLY PERTURBED REACTION-CONVECTION-DIFFUSION PROBLEM WITH TWO PARAMETERS.

  • Priyadharshini, R. Mythili;Ramanujam, N.
    • Journal of applied mathematics & informatics
    • /
    • 제27권3_4호
    • /
    • pp.517-529
    • /
    • 2009
  • In this paper, a singularly perturbed reaction-convection-diffusion problem with two parameters is considered. A parameter-uniform error bound for the numerical derivative is derived. The numerical method considered here is a standard finite difference scheme on piecewise-uniform Shishkin mesh, which is fitted to both boundary and initial layers. Numerical results are provided to illustrate the theoretical results.

  • PDF