• Title/Summary/Keyword: Singular Weighting

Search Result 17, Processing Time 0.021 seconds

A Shape Function for the Mesh-Free Method Using Singular Weighting Function and Three-Dimensional Applications (특이 가중함수를 사용한 무요소법의 형상함수와 3차원 적용)

  • Nam, Yong-Yun
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.1 s.31
    • /
    • pp.39-50
    • /
    • 1999
  • 특이 가중함수로 표현된 shepard interpolant와 일관조건을 사용하여 무요소법 형성함수를 도출하였다. 따라서 통상의 EFGM(Element Free Galerkin Method)과는 달리 변위로 주어지는 경계조건을 자연스럽게 부과할 수 있다. 수치계산 예로서 외팔보 문제를 다루었는데 보이론과 비교하여 매우 잘 맞는 결과를 보여주고, 유한요소법과의 결합도 자연스럽게 이루어짐을 보인다. 또 penny-shaped 균열을 다루는데, 응력확대계수는 균열 표면의 변위로부처 직접 계산하여 해석해와 비교한다.

  • PDF

Analysis of robust performance improvement using loop shaping and structured singular value (루프쉐이핑과 구조적 특이치를 이용한 견실성능 개선)

  • 방경호;오도창;박홍배
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.5
    • /
    • pp.17-24
    • /
    • 1996
  • In this paper, we present a robust performance improvement method for the NLCF(normalized left coprime factor) uncertain structure using loop shaping and the structure singular value. For this, we select weighting functions for a loop shaping considering condition numer, and transform the NLCF uncertain structure into the 4-block structure. However, we can't get a good performance on account of the restriction of weighting functions. To cope with this, we motivate the use of structured singular vlaue in the robust performance improvement procedure. After all, the robust performance improvement can be obtained by a factor W$_{a}$ and a scaling factor of D-K iteration.

  • PDF

Determination of Weighting Factor in the Inverse Model for Estimating Surface Velocity from AVHRR/SST Data (AVHRR/SST로 부터 표층유속을 추정하기 위한 역행렬 모델에서 가중치의 설정)

  • Lee, Tae-Shin;Chung, Jong-Yul;Kang, Hyoun-Woo
    • 한국해양학회지
    • /
    • v.30 no.6
    • /
    • pp.543-549
    • /
    • 1995
  • The inverse method has been used to estimate a surface velocity field from sequential AVHRR/SST data. In the model, equation system was composed of heat equation and horizontal divergence minimization and the velocity field contained in the advective term of the heat equation, which was linearized in grid system, was estimated. A constraint was the minimization of horizontal divergence with weighting factor and introduced to compensate the null space(Menke, 1984) of the velocity solutions for the heat equation. The experiments were carried out to set up the range of weighting factor and the matrix equation was solved by SVD(Singular Value Decomposion). In the experiment, the scales of horizontal temperature gradient and divergence of synthetic velocity field were approximated to those of real field. The neglected diffusive effect and the horizontal variation of heat flux in the heat equation were regarded as random temperature errors. According to the result of experiments, the minimum of relative error was more desirable than the minimum of misfit as the criteria of setting up the weighting factor and the error of estimated velocity field became small when the weighting factor was order of $10^{-1}$

  • PDF

Cluster Feature Selection using Entropy Weighting and SVD (엔트로피 가중치 및 SVD를 이용한 군집 특징 선택)

  • Lee, Young-Seok;Lee, Soo-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.4
    • /
    • pp.248-257
    • /
    • 2002
  • Clustering is a method for grouping objects with similar properties into a same cluster. SVD(Singular Value Decomposition) is known as an efficient preprocessing method for clustering because of dimension reduction and noise elimination for a high dimensional and sparse data set like E-Commerce data set. However, it is hard to evaluate the worth of original attributes because of information loss of a converted data set by SVD. This research proposes a cluster feature selection method, called ENTROPY-SVD, to find important attributes for each cluster based on entropy weighting and SVD. Using SVD, one can take advantage of the latent structures in the association of attributes with similar objects and, using entropy weighting one can find highly dense attributes for each cluster. This paper also proposes a model-based collaborative filtering recommendation system with ENTROPY-SVD, called CFS-CF and evaluates its efficiency and utilization.

Contrast Enhancement Algorithm Using Singular Value Decomposition and Image Pyramid (특이값 분해와 영상 피라미드를 이용한 대비 향상 알고리듬)

  • Ha, Changwoo;Choi, Changryoul;Jeong, Jechang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.11
    • /
    • pp.928-937
    • /
    • 2013
  • This paper presents a novel contrast enhancement method based on singular value decomposition and image pyramid. The proposed method consists mainly of four steps. The proposed algorithm firstly decomposes image into band-pass images, including basis image and detail images, to improve both the global contrast and the local detail. In the global contrast process, singular value decomposition is used for contrast enhancement; the local detail scheme uses weighting factors. In the final image composition process, the proposed algorithm combines color and luminance components in order to preserve the color consistency. Experimental results show that the proposed algorithm improves contrast performance and enhances detail compared to conventional methods.

Robust Control of a Glass Fiber Composite Beam using $\mu$-Synthesis Algorithm

  • Lee, Seong-cheol;Kwon, Tae-Kyu;Yun, Yeo-Hung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.76-83
    • /
    • 2000
  • A study on the robust control of a composite beam with a distributed PVDF sensor and piezo-ceramic actuator is presented in this paper. $1^{st}$ and $2^{nd}$ natural frequencies are considered in the modeling, because robust control theory which has robustness to structured uncertainty is adopted to suppress the vibration. If the controllers designed by $H_{\infty}$ theory do not satisfy control performance, it is improved by $\mu$-synthesis method with D-K iteration so that the $\mu$-controller based on the structured singular value satisfies the nominal performance and robust performance. Simulation and experiment were carried out with the designed controller and the verification of the robust control properties was presented by results.

  • PDF

$\mu$optimal controller design using equivalent weighting function (동등하중함수를 이용한 $\mu$-최적제어기 설계)

  • 방경호;이연정;박홍배
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.1
    • /
    • pp.65-71
    • /
    • 1997
  • In this paper, we propose a new .mu.-controller design method using an equivalent weighting function $W_{\mu}$(s). The proposed mehtod is not guaranteed to converge to the minimum as D-K and .mu.-K iteration method. However, the robust performance problem can be converted into an equivalent $H^{\infty}$ optimization problem of unstructured uncertainty by using an equivalent weightng function $W_{\mu}$(s). Also we can find a .mu.-optimal controller iteratively using an error index $d_{\epsilon}$ of differnce between maximum singular value and .mu.-norm. And under the condition of the same order of scaling functions, the proposed method provides the .mu.-optimal controller with the degree less than that obtained by D-K iteration..

  • PDF

Frequency weighted reduction using Lyapunov inequalities (Lyapunov 부등식을 이용한 주파수하중 차수축소)

  • 오도창;정은태;이상경
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.12-12
    • /
    • 2000
  • This paper consider a new weighted model reduction using block diagonal solutions of Lyapunov inequalities. With the input and/or output weighting function, the stability of reduced order system is quaranteed and a priori error bound is proposed. to achieve this, after finding the solutions of two Lyapunov inequalities and balancing the full order system, we find the reduced order systems using the direct truncation and the singular perturbation approximation. The proposed method is compared with other existing methods using numerical example.

  • PDF

A Calculation Method of Source Level of Underwater Transient Noise by Frequency Band (주파수 대역별 수중 순간소음 음원준위 산출 기법)

  • Choi, Jae-Yong;Oh, Jun-Seok;Lee, Phil-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.528-533
    • /
    • 2010
  • This paper describes a calculation method of source level of a ship transient noise, which is one of the important elements for the ship detection. Aim of transient noise measurements is to evaluate of acoustic energy due to singular occurrence, which is therefore defined as non-periodic and short termed events like an attack periscope, a rudder and a torpedo door. In generally, in the case of randomly spaced impulse, the spectrum becomes a broadband random noise with no distinctive pattern. Therefore, frequency analysis is not particularly revealing for type of signal. In the paper, it is performed in time domain to analyze a transient noise. However, a source level of transient noise is required an investigation for multiple frequency band. So, in order to calculate a source level of transient noise, a design of exponential weighting function, convolution, band pass filtering, peak detection, root mean square, and parameter compensation are applied. The effectiveness of this calculation scheme is studied through computer simulations and a sea test. Furthermore, an application of the method is applied in a real case.

Uncertainty Modeling and Robust Control for LCL Resonant Inductive Power Transfer System

  • Dai, Xin;Zou, Yang;Sun, Yue
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.814-828
    • /
    • 2013
  • The LCL resonant inductive power transfer (IPT) system is increasingly used because of its harmonic filtering capabilities, high efficiency at light load, and unity power factor feature. However, the modeling and controller design of this system become extremely difficult because of parameter uncertainty, high-order property, and switching nonlinear property. This paper proposes a frequency and load uncertainty modeling method for the LCL resonant IPT system. By using the linear fractional transformation method, we detach the uncertain part from the system model. A robust control structure with weighting functions is introduced, and a control method using structured singular values is used to enhance the system performance of perturbation rejection and reference tracking. Analysis of the controller performance is provided. The simulation and experimental results verify the robust control method and analysis results. The control method not only guarantees system stability but also improves performance under perturbation.