• Title/Summary/Keyword: Single-stage AC-DC

Search Result 132, Processing Time 0.03 seconds

New Isolated Single-Phase AC-DC Converter for Universal Input Voltage

  • Lee, Ming-Rong;Yang, Lung-Sheng;Lin, Chia-Ching
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.592-599
    • /
    • 2013
  • This paper investigates a new isolated single-phase AC-DC converter, which integrates a modified AC-DC buck-boost converter with a DC-DC forward converter. The front semi-stage is operated in discontinuous conduction mode (DCM) to achieve an almost unity power factor and a low total harmonic distortion of the input current. The rear semi-stage is used for step-down voltage conversion and electrical isolation. The front semi-stage uses a coupled inductor with the same winding-turn in the primary and secondary sides, which is charged in series during the switch-on period and is discharged in parallel during the switch-off period. The discharging time can be shortened. In other words, the duty ratio can be extended. This semi-stage can be operated in a larger duty-ratio range than the conventional AC-DC buck-boost converter for DCM operation. Therefore, the proposed converter is suitable for universal input voltage (90~264 $V_{rms}$) and a wide output-power range. Moreover, the voltage stress on the DC-link capacitor is low. Finally, a prototype circuit is implemented to verify the performance of the proposed converter.

Low Frequency Current Reduction using a Quasi-Notch Filter operated in Two-Stage DC-DC-AC Grid-Connected Systems (Quasi-Notch Filter를 이용한 DC-DC-AC 계통연계형 단상 인버터에서의 저주파 전류 감소 기법)

  • Jung, Hong-Ju;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.276-282
    • /
    • 2014
  • In a single-phase grid-connected power system consisting of a dc-dc converter and a dc-ac converter, the current drawn from renewable energy sources has a tendency to be pulsated and contains double-fundamental frequency ripple components, which results in several drawback such as a power harvesting loss and a shortening of the energy source's life. This paper presents a new double-fundamental current reduction-scheme with a fast dc-link voltage loop for two-stage dc-dc-ac grid connected systems. In the frequency domain, an adequate control design is performed based on the small-signal transfer function of a two-stage dc-dc-ac converter. To verify the effectiveness of proposed control algorithm, a 1 kW hardware prototype has been built and experimental results are presented.

A Study on Single Stage High Power Factor AC-DC Converter (단일 전력단 고역률 AC-DC 컨버터에 관한 연구)

  • Lee, Won-Jae;Kim, Yong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.9
    • /
    • pp.590-597
    • /
    • 2000
  • Design of single state AC-DC converter with high power factor for low level applications is proposed. The proposed converter is obtained from the integration of a buck-boost converter and the half-bridge DC-DC converter. This converter gives the good power factor correction low line current harmonic distortions and tight output voltage regulations. This converter also has a high efficiency by employing an soft switching method and synchronous rectifier. The modelling and detailed analysis for the proposed converter are performed. To verify the performance of the proposed converter a 100W converter has been designed

  • PDF

A Comparative Study on Soft Switching Method of Single Stage AC/DC Full-Bridge Converter (단일전력단으로 구성된 역률 보상 AC/DC Full-Bridge Converter의 소프트 스위칭 기법에 대한 비교 연구)

  • Lee S. R.;Jeon C. H.;Jeong C. G.
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.694-697
    • /
    • 2001
  • A optimal soft switching technique for A/DC full bridge converter is proposed. variable soft switching single stage AC/DC full bridge converter with unit power factor are presented in this paper. Using soft switching, we can reduce a switching losses. As a result, achieving good power factor and achieving a good efficiency. We search a optimal soft switching technique in this paper and to verify the theoretical analysis of the presented AC/DC full bridge converter, a design example is given with its Pspice and Psim simulation and experimental results.

  • PDF

Single-Stage Single-Switched AC/DC Converter with Magnetic Coupled Nondissipative Snubber (자기결합 무손실 스너버를 갖는 새로운 고역률 단일전력단 AC/DC 컨버터)

  • 조정욱;문건우;정영석;윤명중
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.423-431
    • /
    • 1997
  • A new single-stage/single-switched forward converter with magnetic coupled nondissipa-tive snubber is proposed. The proposed converter gives the good power factor correction (PFC), low current harmonic distortion, and tight output voltage regulation. The prototype shows the IEC 555-2 requirements are met satisfactorily with nearly unity power factor. This proposed converter with magnetic coupled nondissipative snubber is particularly suited for low power level power supply applications.

  • PDF

Switched Inductor Z-Source AC-DC Converter

  • Sedaghati, Farzad;Hosseini, Seyed Hossein;Sarhangzadeh, Mitra
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.1
    • /
    • pp.67-76
    • /
    • 2012
  • Due to the increasing amount of applications of power electronic ac-dc converters, it is necessary to design a single-stage converter that can reliably perform both buck and boost operations. Traditionally, this can be achieved by double-stage conversion (ac/dc-dc/dc) which ultimately leads to less efficiency and a more complex control system. This paper discusses two types of modern ac-dc converters. First, the novel impedance-source ac-dc converter, abbreviated as custom Z-source rectifier, is analyzed; and then, switched inductor (SL) Z-source ac-dc converter is proposed. This paper describes the Z-source rectifiers' operating principles, the concepts behind them, and their superiorities. Analysis and simulation results show that the proposed custom Z-source rectifier can step up and step down voltage; and the main advantage of the SL Z-source ac-dc converter is its high step-up capability. Low ripple of the output dc voltage is the other advantage of the proposed converters. Finally, the SL Z-source ac-dc converter is compared with the custom Z-source ac-dc converter.

A Conduction Band Control AC-DC Buck Converter for a High Efficiency and High Power Density Adapter (고효율, 고전력밀도 아답터를 위한 도통밴드 제어 AC-DC 벅 컨버터)

  • Moon, SangCheol;Chung, Bonggeun;Koo, Gwanbon
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.38-39
    • /
    • 2017
  • This paper proposes a new control method for an AC-DC Buck converter which is utilized as a front-end converter of a 2-stage high power density adapter. In the conventional adapter applications, 2-stage configuration shows higher power transfer efficiency and higher power density than those of the single stage flyback converter. In the 2-stage AC-DC converter, the boost converter is widely used as a front-end converter. However, an efficiency variation between high AC line and low AC line is large. On the other hand, the proposed conduction band control method for a buck front-end converter has an advantage of small efficiency variation. In the proposed control method, switching operation is determined by a band control voltage which represents output load condition, and an AC line voltage. If the output load increasesin low AC line, the switching operation range is expanded in half of line cycle. On the contrary, in light load and high line condition, the switching operation is narrowed. Thus, the proposed control method reduces switching loss under high AC line and light load condition. A 60W prototype which is configured the buck and LLC converter with the proposed control method is experimented on to verify the validity of the proposed system. The prototype shows 92.16% of AC-DC overall efficiency and 20.19 W/in 3 of power density.

  • PDF

Reduction of DC-Link Capacitance in Single-Phase Non-Isolated Onboard Battery Chargers

  • Nguyen, Hoang Vu;Lee, Sangmin;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.394-402
    • /
    • 2019
  • This paper proposes a single-phase non-isolated onboard battery charger (OBC) for electric vehicles (EVs) that only uses small film capacitors at the DC-link of the AC-DC converter. In the proposed charger, an isolated DC-DC converter for low-voltage batteries is used as an active power decoupling (APD) circuit to absorb the ripple power when a high-voltage (HV) battery is charged. As a result, the DC-link capacitance in the AC-DC converter of the HV charging circuit can be significantly reduced without requiring any additional devices. In addition, some of the components of the proposed circuit are shared in common for the different operating modes among the AC-DC converter, LV charging circuit and active power filter. Therefore, the cost and volume of the onboard battery charger can be reduced. The effectiveness of the proposed topology has been verified by the simulation and experimental results.

Single-stage Power Factor Corrected AC-to-DC Converter for sustain/reset Driving Power Supply of PDP TV (PDP TV의 sustain/reset 구동전원 공급을 위한 1단방식의 역률보상형 AC-to-DC 컨버터)

  • Kang, Feel-Soon;Park, Jin-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.2
    • /
    • pp.282-289
    • /
    • 2008
  • To improve the efficiency of PDP TV, it should minimize the power losses transpired during AC-to-DC power conversion and PDP driving process. Generally the input power supply for PDP driving employes a two-stage power factor corrected converter, and it needs additional DC-to-DC converters to supply driving power for reset circuit ed sustain driver, which has high power consumption. However, such a circuit configuration has a difficulty for the PDP market requires low cost. To alleviate this problem, a new circuit composition is presented. It integrates input power supply with reset and sustain driver in a single power stack The input power supply of the proposed circuit has a single-stage structure to minimize power conversion loss, and it directly supplies power to the sustain driver so as to reduce the system size and cost.

A Single-Stage AC-DC Power Module Converter for Fast-Charger (급속충전기용 파워 모듈을 위한 단일단 AC-DC 컨버터)

  • LE, Tat-Thang;Choi, Sewan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.5
    • /
    • pp.384-390
    • /
    • 2022
  • In this study, a single-stage, four-phase, interleaved, totem-pole AC-DC converter is proposed for a super-fast charger station that requires high power, a wide voltage range, and bidirectional operation capabilities and adopts various types of electric transport vehicles. The proposed topology is based on current-fed push-pull dual active bridge converter combined with the totem-pole operation. Owing to the four-phase interleaving effect, the bridge on the grid side can switch at 0.25, 0.5, and 0.75 to achieve a ripple-free grid current. The input filter can be removed theoretically. Switching methods for the duty of the secondary-side duty cycle are proposed, and they correspond to the primary duty cycle for reducing the circulating power and handling the total harmonic distortion. Therefore, the converter can operate under a wide voltage range. Experimental results from a 7.5 kW prototype are used to validate the proposed concept.