• Title/Summary/Keyword: Single-layer structure

Search Result 696, Processing Time 0.026 seconds

Improved Efficiency of Polymer LEDs using Electron Transporting Layer

  • Kim, Jong-Lae;Kim, Jai-Kyeong;Cho, Hyun-Nam;Kim, Dong-Young;Hong, Sung-Il;Kim, Chung-Yup
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.125-126
    • /
    • 2000
  • We report the use of fluorene based copolymers containing quinoline(POF66, PIF66) and pyridine(PFPV) units as electron transporting polymers for multi-layered LEDs. Double-layer device structure combining PIF66 as electron-transporting layer with the emissive MEHPPV showed a maximum quantum efficiency of 0.03%, which is 30 fold increased compared with ITO/MEHPPV/Al single-layer device. PFPV layer increased the quantum efficiency up to 0.1% in the device structure of ITO/(P-3:PVK)/PFPV/Al. The ETL with the electron deficient moiety improved the LED performance by the characteristics of electron transporting as well as hole blocking between emissive layer and metal cathode.

  • PDF

Material and Manufacturing Properties of Bracket Mural Paintings of Daeungjeon Hall in Gaeamsa Temple, Buan

  • Lee, Hwa Soo;Yu, Yeong Gyeong;Han, Kyeong-Soon
    • Journal of Conservation Science
    • /
    • v.38 no.1
    • /
    • pp.45-54
    • /
    • 2022
  • This study examined the production technique of bracket murals in Daeungjeon Hall, Gaeamsa Temple by conducting a analysis of their wall structure, material characteristics, and painting layers. Wall was a single-branch structure with support layer, middle layer, finishing layer, and painting layer. The support layer, middle layer and finishing layer, were produced by mixing sand (quartz, feldspars etc.), and loess. The ratio of above medium sand to below fine sand was approximately 0.7 : 9.3 in the support layer, 4 : 6 in the middle layer and 6 : 4 in the finishing layer, which had a more percentage of above medium sand than the support layer. The analysis of the painting layer showed that natural soil pigment was used to establish a relatively ground layer of up to 50 ㎛, and pigments such as Lead sulfate, atacamite and mercury sulfide were painted on top of the layer. This study's results confirmed that the bracket mural paintings in Gaeamsa Temple are within the category of the production style of murals during the Joseon period. However, the points that the middle layer was formed several times, the significant difference in particle size distribution between the wall, and the absence of chopped straw in the support layer are a feature of bracket mural paintings in Gaeamsa Temple. These properties of murals as material and structure may be viewed for correlation with the degree of damage to wall structure of mural painting and would serve as an important reference to diagnosis the conservation conditions of murals or prepare conservation treatments.

Operation Characteristics of a Small Single-phase Written-pole Motor in Home Appliance (가전기기용 소형 단상 Written Pole Motor의 운전특성)

  • Park, Seong-Cheol;Lee, Won-Yong;Yu, Byung-Hun;Kim, Dae-Kyong;Shin, Duck-Shick;Kim, Byung-Taek
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.311-317
    • /
    • 2010
  • This paper deals with operation characteristics of a written-pole motor (WPM), having that of a permanent magnet (PM) synchronous motor and induction motor at once. The WPM also has a magnet layer on the surface of the rotor and the exciter pole that is a device to make the magnet layer magnetized during the operation. This study, introducing a fundamental structure and operation characteristics of a single-phase WPM, proposes a initial design method. With those ground, a 130W, single-phase WPM that is designed for a home appliance is presented and verified with a performance through the experiment.

An Enhanced Fuzzy Single Layer Perceptron for Image Recognition (이미지 인식을 위한 개선된 퍼지 단층 퍼셉트론)

  • Lee, Jong-Hee
    • Journal of Korea Multimedia Society
    • /
    • v.2 no.4
    • /
    • pp.490-495
    • /
    • 1999
  • In this paper, a method of improving the learning time and convergence rate is proposed to exploit the advantages of artificial neural networks and fuzzy theory to neuron structure. This method is applied to the XOR Problem, n bit parity problem which is used as the benchmark in neural network structure, and recognition of digit image in the vehicle plate image for practical image application. As a result of the experiments, it does not always guarantee the convergence. However, the network showed improved the teaming time and has the high convergence rate. The proposed network can be extended to an arbitrary layer Though a single layer structure Is considered, the proposed method has a capability of high speed 3earning even on large images.

  • PDF

Mechanical Properties and Thermal Stability of Ti0.5Al0.5N/CrN Nano-multilayered Coatings (Ti0.5Al0.5N/CrN 나노 다층 박막의 기계적 성질과 열적 안정성)

  • Ahn, Seung-Su;Park, Jong-Keuk;Oh, Kyung-Sik;Chung, Tai-Joo
    • Journal of Powder Materials
    • /
    • v.27 no.5
    • /
    • pp.406-413
    • /
    • 2020
  • Ti0.5Al0.5N/CrN nano-multilayers, which are known to exhibit excellent wear resistances, were prepared using the unbalanced magnetron sputter for various periods of 2-7 nm. Ti0.5Al0.5N and CrN comprised a cubic structure in a single layer with different lattice parameters; however, Ti0.5Al0.5N/CrN exhibited a cubic structure with the same lattice parameters that formed the superlattice in the nano-multilayers. The Ti0.5Al0.5/CrN multilayer with a period of 5.0 nm exceeded the hardness of the Ti0.5Al0.5N/CrN single layer, attaining a value of 36 GPa. According to the low-angle X-ray diffraction, the Ti0.5Al0.5N/CrN multilayer maintained its as-coated structure up to 700℃ and exhibited a hardness of 32 GPa. The thickness of the oxidation layer of the Ti0.5Al0.5N/CrN multilayered coating was less than 25% of that of the single layers. Thus, the Ti0.5Al0.5N/CrN multilayered coating was superior in terms of hardness and oxidation resistance as compared to its constituent single layers.

Electrical Equivalent modeling of Powder Electroluminescent Device (후막 전계발광소자의 전기적 등가 모델링)

  • 이종찬;박대희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.49-52
    • /
    • 1998
  • In this paper, to implement the electrical equivalent modeling of powder electroluminescent device, capacitate equation of device was chosen. The conventional structure device which have dielectric and phosphor layer between electrodes, and the single emission structure device which means that dielectric and phosphor were mixed between electrodes, were investigated. As a result, it was possible to make the equation that is transferred capacitance to phosphor layer, and using measured brightness efficiency and conductivity of devices was calculated.

  • PDF

Highly Sensitive and Transparent Touch Sensor by a Double Structure of Single Layer Graphene

  • Kim, Youngjun;Jung, Hyojin;Jin, Hyungki;Chun, Sungwoo;Park, Wanjun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.228.2-228.2
    • /
    • 2014
  • Characteristics of high Fermi velocity, high mechanical strength, and transparency offer tremendous advantages for using graphene as a promising transparent conducting material [1] in electronic devices. Although graphene is a prospective candidate for touch sensor with strong mechanical properties [2] and flexibility, only few investigations have been carried out in the field of sensor as a device form. In this study, we suggest ultra-highly sensitive and transparent graphene touch sensor fabricated by single layer graphenes. One of the graphene layers is formed in the top panel as a disconnected graphene beam transferred on PDMS, and the other of the graphene layer is formed with line-patterning on the bottom panel of triple structure PET/PI/SiO2. The touch sensor shows characteristics of flexible. Its transmittance is approximately 75% where transmittance of the top panel and the bottom panel are 86.3% and 87%, respectively, at 550 nm wavelength. Sheet resistance of each graphene layer is estimated as low as $971{\Omega}/sq$. The results show that the conductance change rate (${\Delta}C/C0$) is $8{\times}105$ which depicts ultra-high sensitivity. Moreover, reliability characteristic confirms consistent behavior up to a 100-cycle test.

  • PDF

The growth of superlattice IGZO thin films using ZnO buffer layer grown by thermal atomic layer deposition

  • Jo, Seong-Un;Jo, Hyeong-Gyun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.162-163
    • /
    • 2013
  • Single-crystal InGaZnO (IGZO) thin films were spontaneously formed as periodic layered structure along the c-axis by thermal treatment at high temperature. when the IGZO superlattice were synthesized by sol-gel method, the effects of preferred growth orientations and the flatness of ZnO buffer layer were investigated. $InGaO_3(ZnO)_2$ superlattice were favorably formed on ZnO buffer layer with single preferred orientation. Futhermore, it showed relatively high Seebeck coefficient and power factor.

  • PDF

Self-organized gradient hole injection to improve the performance of organic light-emitting diodes

  • Lee, Tae-Woo;Chung, Young-Su;Kwon, O-Hyun;Park, Jong-Jin;Chang, Seoung-Wook;Kim, Mu-Hyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1813-1818
    • /
    • 2006
  • We demonstrate a new approach to form gradient hole injection layer (HIL) in organic light-emitting diodes (OLEDs). Single spincoating of hole-injecting conducting polymer compositions with a perfluorinated ionomer results in gradient workfunction through the layer by self-organization, which lead to remarkably efficient single layer polymer light-emitting diodes (PLEDs) (${\sim}21$ cd/A). The device lifetime was significantly improved (${\sim50$ times) compared with the conventional hole injection layer, poly(3,4-ethylenedioxy-thiophene)/polystyrene sulfonate. This solution processed HIL also produced dramatically enhanced luminous efficiency (${\sim}34$ cd/A) in vacuum- deposited green fluorescent OLEDs while the vacuum deposited HIL gave the luminous efficiency of ${\sim}23$ cd/A in the same device structure.

  • PDF