• Title/Summary/Keyword: Single-Stage network

Search Result 86, Processing Time 0.032 seconds

Design of a Partitionable Single-Stage Shuffle-Exchange Network (분할 가능한 단단계(Single-Stage) Shuffle-Exchange 네트워크의 설계)

  • Lee, Jae-Dong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.3_4
    • /
    • pp.130-137
    • /
    • 2003
  • This paper presents the problem of partitioning the Single-Stage Shuffle-Exchange Network(SSEN). An algorithm, named SSEN_to_PSEN, is devised to transform an SSEN into a Partitionable Shuffle-Exchange Network (PSEN). The proposed algorithm presents that the SSEN can be partitioned into independent sub-networks without additional links for N $\leq$ 8. Additional links are needed in order to partition an SSEN, but only when N $\geq$ 16. The running time of the algorithm SSEN_to_PSEN is $\theta$(NlogN). By comparing with a hypercube network, the PSEN is less expensive than a hypercube network even when some additional links are added. By partitioning, a large PSEN in a massively parallel machine can compute various problems for multiple users simultaneously, thereby the processing efficiency of the machine is improved.

A Design Problem of a Two-Stage Cyclic Queueing Network (두 단계로 구성된 순환대기네트워크의 설계)

  • Kim Sung-Chul
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.1
    • /
    • pp.1-13
    • /
    • 2006
  • In this paper we consider a design problem of a cyclic queueing network with two stages, each with a local buffer of limited capacity. Based on the theory of reversibility and product-form solution, we derive the throughput function of the network as a key performance measure to maximize. Two cases are considered. In case each stage consists of a single server, an optimal allocation policy of a given buffer capacity and work load between stages as well as the optimal number of customers is identified by exploiting the properties of the throughput function. In case each stage consists of multiple servers, the optimal policy developed for the single server case doesn't hold any more and an algorithm is developed to allocate with a small number of computations a given number of servers, buffer capacity as well as total work load and the total number of customers. The differences of the optimal policies between two cases and the implications of the results are also discussed. The results can be applied to support the design of certain manufacturing and computer/communication systems.

The generation of SSIN(Single Stage Interconnection Network) using Adjacency Matrix (인접행렬을 활용한 Single Stage Interconnection Network의 생성)

  • Kim, Sung-Chun
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1116-1120
    • /
    • 1987
  • In this paper, the Adjacency Matrix is applied to analyze the MIN, which is one of the kind and further implemented in designing the new kind of SSIN, which provides the special form of MIN that has identical link patterns between switching stages. At first, new theorems are established and next the classes of the SSIN are generated from computer simulation.

  • PDF

Optimal Design of Cylinder Configuration for a 1-Stage Two Cylinder $CO_2$ Compressor (1단 2실린더 $CO_2$ 압축기의 실린더 형상 최적 설계)

  • Ahn, Jong-Min;Kim, Hyun-Jin;Cho, Sung-Oug
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.119-124
    • /
    • 2008
  • Recently, focus has been drawn on natural refrigerants due to increasing concern on global warming. As a consequence, CO2 systems such as a heat pump water heater using CO2 as a refrigerant are rapidly growing on the market. Currently, rolling piston rotary compressors are widely used for CO2 heating and/or refrigeration systems. There are several ways of realizing gas compression structure. They are single stage compression with single cylinder, single stage compression with two cylinders, and two stage compression with two cylinders. In this paper, computer simulation program which was validated for a single stage rotary compressor with one cylinder has been extended for a single stage, two cylinder rotary type. Numerical investigation has been made on optimal design for the cylinder configuration using the extended simulation program. For a single stage two cylinder rotary compressor having a displacement volume of 4 cc for each cylinder, compressor efficiency has been found to be maximum when the cylinder radius and height are 31mm and 10mm, respectively.

  • PDF

Jointly Learning of Heavy Rain Removal and Super-Resolution in Single Images

  • Vu, Dac Tung;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.113-117
    • /
    • 2020
  • Images were taken under various weather such as rain, haze, snow often show low visibility, which can dramatically decrease accuracy of some tasks in computer vision: object detection, segmentation. Besides, previous work to enhance image usually downsample the image to receive consistency features but have not yet good upsample algorithm to recover original size. So, in this research, we jointly implement removal streak in heavy rain image and super resolution using a deep network. We put forth a 2-stage network: a multi-model network followed by a refinement network. The first stage using rain formula in the single image and two operation layers (addition, multiplication) removes rain streak and noise to get clean image in low resolution. The second stage uses refinement network to recover damaged background information as well as upsample, and receive high resolution image. Our method improves visual quality image, gains accuracy in human action recognition task in datasets. Extensive experiments show that our network outperforms the state of the art (SoTA) methods.

  • PDF

A Study on the Loss Probability and Dimensioning of Multi-Stage Fiber Delay Line Buffer (다단 광 지연 버퍼의 손실률과 크기에 관한 연구)

  • 김홍경;이성창
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.10
    • /
    • pp.95-102
    • /
    • 2003
  • The buffering is a promising solution to resolve the contention problem in optical network. we study the packet loss probability and the dimensioning of optical buffer using a Fiber Delay Line for variable length packet. In this paper, we study the relation between the granularity and the loss of FDL buffer in Single-Stage FDL buffer and propose the Single-Bundle Multi-Stage FDL buffer. The Multi-Stage FDL buffer is too early yet to apply to the current backbone network, considering the current technology in view of costs. but we assume that the above restriction will be resolved in these days. The appropriate number of delay and pass line for a dimensioning is based on a amount of occupied time by packets. Once more another multi-stage FDL buffer is proposed, Split-Bundle multi-stage FDL buffer. The Split-Bundle ms-FDL buffer is more feasible for a FDL buffer structure, considering not only a size of switching matrix but also a bulk of switching element. its feasibility will be demonstrated from a loss probability.

Improving the speed of deep neural networks using the multi-core and single instruction multiple data technology (다중 코어 및 single instruction multiple data 기술을 이용한 심층 신경망 속도 향상)

  • Chung, Ik Joo;Kim, Seung Hi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.6
    • /
    • pp.425-435
    • /
    • 2017
  • In this paper, we propose optimization methods for speeding the feedforward network of deep neural networks using NEON SIMD (Single Instruction Multiple Data) parallel instructions and multi-core parallelization on the multi-core ARM processor. As the result of the optimization using SIMD parallel instructions, we present the amount of speed improvement and arithmetic precision stage by stage. Through the optimization using SIMD parallel instructions on the single core, we obtain $2.6{\times}$ speedup over the baseline implementation using C compiler. Furthermore, by parallelizing the single core implementation on the multi-core, we obtain $5.7{\times}{\sim}7.7{\times}$ speedup. The results we obtain show the possibility for applying the arithmetic-intensive deep neural network technology to applications on mobile devices.

SDCN: Synchronized Depthwise Separable Convolutional Neural Network for Single Image Super-Resolution

  • Muhammad, Wazir;Hussain, Ayaz;Shah, Syed Ali Raza;Shah, Jalal;Bhutto, Zuhaibuddin;Thaheem, Imdadullah;Ali, Shamshad;Masrour, Salman
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.17-22
    • /
    • 2021
  • Recently, image super-resolution techniques used in convolutional neural networks (CNN) have led to remarkable performance in the research area of digital image processing applications and computer vision tasks. Convolutional layers stacked on top of each other can design a more complex network architecture, but they also use more memory in terms of the number of parameters and introduce the vanishing gradient problem during training. Furthermore, earlier approaches of single image super-resolution used interpolation technique as a pre-processing stage to upscale the low-resolution image into HR image. The design of these approaches is simple, but not effective and insert the newer unwanted pixels (noises) in the reconstructed HR image. In this paper, authors are propose a novel single image super-resolution architecture based on synchronized depthwise separable convolution with Dense Skip Connection Block (DSCB). In addition, unlike existing SR methods that only rely on single path, but our proposed method used the synchronizes path for generating the SISR image. Extensive quantitative and qualitative experiments show that our method (SDCN) achieves promising improvements than other state-of-the-art methods.

High Performance 32-bit Embedded AES for Wireless Network Router Applications (무선 네트웤 라우터응용을 위한 고성능32비트 내장AES)

  • Lin, Deng;You, Young-Gap
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.11
    • /
    • pp.97-104
    • /
    • 2010
  • This paper presents a high performance 32-bit single core AES architecture. The proposed architecture employs a 5-stage pipeline: four stages in the ShiftRows/InvShiftRows module, and one stage in the MixColumn/InvMixColumn module. Circuit size reduction has been achieved through merging of the shift rows and inverse shift rows. The mix column and inverse mix column share the same resources. Three 32-bit registers replace the conventional ten 32-bit registers in the RCON architecture. The proposed architecture has been implemented in Verilog HDL, and yields 415 Mbits/s throughput with the circuit size of 13764 gate equivalents on the 0.18um CMOS process technology. This high performance architecture is suitable for wireless network router applications.

Deep Learning-based Single Image Generative Adversarial Network: Performance Comparison and Trends (딥러닝 기반 단일 이미지 생성적 적대 신경망 기법 비교 분석)

  • Jeong, Seong-Hun;Kong, Kyeongbo
    • Journal of Broadcast Engineering
    • /
    • v.27 no.3
    • /
    • pp.437-450
    • /
    • 2022
  • Generative adversarial networks(GANs) have demonstrated remarkable success in image synthesis. However, since GANs show instability in the training stage on large datasets, it is difficult to apply to various application fields. A single image GAN is a field that generates various images by learning the internal distribution of a single image. In this paper, we investigate five Single Image GAN: SinGAN, ConSinGAN, InGAN, DeepSIM, and One-Shot GAN. We compare the performance of each model and analyze the pros and cons of a single image GAN.