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Abstract This paper presents the problem of partitioning the Single-Stage Shuffle-Exchange
Network(SSEN). An algorithm, named SSEN_to_PSEN, is devised to transform an SSEN into a
Partitionable Shuffle-Exchange Network (PSEN). The proposed algorithm presents that the SSEN can
be partitioned into independent sub-networks without additional links for N < 8. Additional links are
needed in order to partition an SSEN, but only when N > 16. The running time of the algorithm
SSEN_to_PSEN is 8(NlogN). By comparing with a hypercube network, the PSEN is less expensive
than a hypercube network even when some additional links are added. By partitioning, a large PSEN
in a massively parallel machine can compute various problems for multiple users simultaneously,
thereby the processing efficiency of the machine is improved.
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1. Introduction

In recent years, the design of multiprocessor(or
multi-computer) systems in which a large number of
processors(or PCs) can be applied to -a single problem
has grown. Many applications, such as weather
prediction, pollution monitoring, radar tracking, and

image processing, are modeled by imposing a grid
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over the domain being modeled[1,2,3]. Any multi-
ocessor{or multi-computer) system must be designed
to allow efficient communication between processors.
As  the
interconnection design becomes more critical as

number of processors grows, the
centralized bus connections become impractical. One
of the major problems in designing multiprocessor
systems is to design a cost-effective interconnection
network.

The partitionability of an interconnection network
is the ability to divide the network into independent
sub-networks of different sizes[3,4,5]. A partitionable
network provides the following advantages: (a) it
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can be used in parallel for multiple users in multi-
ocessor systems such as SIMD, multiple-IMD,
MIMD and partitionable SIMD/MIMD environments
and (b) a smaller-size SIMD machine will utilize its
PEs) more
SIMD  machine

performing the same task for some cases, so

processors(or efficiently than a

larger-size when both are
information about partitioning can be used to
improve processing efficiency in a multiprocessor
system[6,7,8].

The shuffle-exchange network has been shown
to be a very good interconnection network in some
applications such as polynomial evaluation, sorting,
matrix transposition, and fast Fourier transform
[1,3,79,10]. Figure 1.(a) shows a Perfect Shuffle
Network for 8 processors. Here the two-by-two
switches are removed and replaced by exchange
links between pairs of processors to make a
Single-stage Shuffle-Exchange Network which is
shown in Figure 1.(b). An SSEN has the following
advantages:

* An SSEN uses less hardware than the popular
multi-stage network like the Butterfly network or
the static hypercube network [3,10].

*An SSEN can be used as a low-cost flexible
simulator for other networks like the hypercube
network [10,11].

*«An  SSEN is very

implementation of particular algorithms such as the

efficient for the

fast Fourier transform, polynomial evaluation,
sorting and matrix transposition [13,14].

* An SSEN has the capability of realizing every
other permutation [5,10].

Despite these advantages, an SSEN has not been
popularly implemented in some machine. One of the
reasons is that an SSEN cannot be partitioned into

independent sub-networks, as shown by Siegel in

1980(6,8].
Here, the partitioning method for the
Single-Stage  Shuffle  Exchange Network is

presented. In order to transform an SSEN into a
PESN, a few additional links between processors
are needed. An algorithm SSEN_to_PSEN which
shows the method for adding the additional links is
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(a) (b)
Figl (a) Perfect-Shuffle Network of size 8 with
four 2x2 switches. (b) Single-stage Shuffle-
Exchange Network of size 8 with four

exchange links.

discussed.

This paper is organized in the following way:
Section 2 presents definitions for an SSEN, section
3 presents a Partitionable Shuffle-Exchange
Network(or PSEN for short) and discusses an
algorithm SSEN_to_PSEN  which
SSEN into an efficient PSEN. Section 4 discusses
the comparison to other networks and section 5

transforms an

states some conclusions.

2. Definitions

According to [1,59,11,12], the following definitions
are used for a Single-stage Shuffle-Exchange
Network.

@ For some integer n, an SSEN has N(=2")
Processors.

@ An SSEN uses three ports in each processor:
A shuffle-in port,
exchange port.

a shuffle-out port, and an

@ The processors are indexed 0 through N - 1
for physical processor address.
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@ For <17V,
processor P; is connected to the shuffle-in port of Py
® For -12! < i < N, the shuffle-out port of

0 < i the shuffle-out port of

processor P; is connected to shuffle-in port of Pai-n

® For 0 < i < 7N, the exchange ports of Py

and Py are connected to each other.

@ All links are bi-directional.

It is useful for our purpose to describe an SSEN
using graphs. Therefore, the following definition is
introduced.

(Definition 1) Let G=(V.E) be an ordered graph.
Then G is an SSEN graph denoted by SSEN(G), if
and only if all of the following conditions are satisfied:

@ IVI= 2" = N be the number of vertices.

@For 0<i < g—], (v;, v2) € E and
® For &< i < N-1, s vyi-y) € E and
@For 0 <i < %—1, (va, v2iv1) € E

By associating vertices with processors and
edges with links, it is clear from the definitions
that a graph G is an SSEN-graph if and only if

the associated network is an SSEN.

3. A Partitionable Shuffle-Exchange Network

This  section introduces the Partitionable
Shuffle-Exchange Network and describes an
algorithm SSEN_to_PSEN which lead to a PSEN
by adding additional links into an SSEN.

(Definition 2) Let G=(V,E) be an ordered graph,
and let {V|= 2" = N be the number of vertices. Let
us denote with V' = {v,, v, -, V%;_l} and with V?

= {vuy, Vy,» 5 Vo L Then G is a PSEN-graph
2 2

denoted by PSEN(G) if and only if

@ SSEN(G) and |VI= 2 or

@ SSEN(G) and PSEN(G) and PSEN(G?), where
G' =(V', E) and G*=(V% E? and E', E? < E.

Clearly, if a graph G is a PSEN-graph, then the
associated network is a Partitionable Shuffle-
Exchange Network.

(Theorem 1) Let G=(V,E) be an SSEN-graph
(ie, SSEN(G) holds). If |Vl < 8 then SSEN(G)
=> PSEN(G) (ie, G can be partitioned into
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independent sub-networks without additional links).

(Proof) Let SSEN(N) be an SSEN-graph of N
PEs. From our assumption, it follows that we have
to show the theorem for SSEN(2), SSEN(4) and
SSENB). If N = 2, then trivially SSEN(2) =>
PSEN(2) by definition 2. When N = 4, figure
2.(a)-(b) shows that two copies of SSEN(2) can be
mapped onto SSEN(4).
SSEN(4) => PSEN(4) without additional links.
When N = 8, figure 2.(b)-(c) shows that two
copies of SSEN(4) can be mapped onto SSEN(8).
This graph shows that SSEN(8) => PSEN(8)
without additional links. Therefore, if IV| < 8, then
SSEN(G) => PSEN(G). |

3.1 An algorithm SSEN_to_PSEN

Since an SSEN cannot be partitioried into inde-

This graph shows that

pendent sub-networks, the SSEN needs additional
link(s) to be a PSEN for N = 16[68). In the
following, the algorithm SSEN_to_PSEN which shows
how to add the needed additional links onto an SSEN
in order to construct the PSEN is presented.

’ 1
g e
T TN
\\\\ ///
- ml T T -
! ()  SSEN :
4

-
I
|
[
!
J

(C) SSEN (8)

Fig 2 Partitioning graphs of the SSENs without
additional links when 1V| < 8
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Algorithm SSEN_to_PSEN This
transforms an SSEN into a PSEN by establishing
additional links.

« Input: G with SSEN(G)

+ Output: G’ with PSEN(G') such that G < G’

Comment: For an additional connection in step

algorithm

S2, processor(P;) for the shuffle-in port (bk-1, bk-2,
-+, by, bo) is connected to the processor(P;) for the
shuffle-out port (bk-1, be, bk-z,
represent the binary vector of each processor. This
shift of the
rightmost (k-1) bits of shuffle-in vector.

-+, b1), where { and j

connection is a right end-around

S0 {Check termination]
2" «€ |V, where |V )= size (G
Ifks3(ie, IV] S8}, then return(G):
$1 (Renumbering the logical index 7 of each processor]
i€ i mod2%
82 {Establish additional links]
821 For(0 s i 2*'-1 and /= odd)
i <€ binary vector( by-), beg. oo . by bek
/ € binary vector{ by-1, b. bez, -+, bk
iflviv;} € E)
then E € EU {lv, v)}
S22 For(2¥'+] < §<¢2%-1 and = even)

1 € binary vector{bs.1, bug. 1 v L by bk
7 & binary vector{b,.y, by, bz, ***. ik
if{lviv) € E)
thenE <€ EU {(v; v}

83 {Main Recursion]

Divide G into G'and G ? such that size(G ")=gize(G )= 2%
G = SSEN 1o PSEN(G ')

@ = SSEN_to.PSEN(G %)

Return (GVU G%);

(Lemma 1) Let G={V,E} be a set of ordered
SSEN(G), where |VI= 2" = N. Then, after the step
S2 of the algorithm SSEN_to PSEN, SSEN(G) =>
SSEN(G') and SSEN(GY), where G'=( V', E') and
G=(V% ED.

(Proof) The condition of O of definition 1 is
clearly satisfied. (i) Since G is a set of ordered
SSEN(G), when we bisect G into G' and G’, G'
still suffices the conditions @ and @ of definition 1
and step S2.1 of the algorithm SSEN_to_PSEN
establishes additional edges for condition @ of
definition 1. And then, after the step $S2.1, SSEN(()

=> SSEN(G") with size (see Figure 3:L group).

(ii) Similarly, G? suffices the conditions @ and @
of definition 1 and step S2.2 establishes additional
edges for condition @ of definition 1 (see Figure
3'‘H group). Then, after step S2.2, SSEN(G) =>
SSEN(GY) with size . Therefore, by the results of
() and Gi), SSEN(G) => SSEN(G') and SSEN(G)
(ie, G <can be partitioned into independent
sub-networks). |

(Theorem 2) Let G be an SSEN(G). Then the
output of the algorithm SSEN_to_PSEN is a
PSEN-graph (i.e., PSEN(G) is true).

(Proof) We prove it by induction on |V]. Let
G=(V,E) be an ordered SSEN(G) and {V|=2" be the
number of vertices. When n < 3, the claim is
proved by theorem 1. Now consider for n > 4. Let
G' be the result of step S2.1 of an algorithm to G
and let G° be the result of step S22 to G. Then
by lemma 1, there exist SSEN(G') and SSEN(G?,
where G'=(V!, E") with V'] =2"-1 and G*=(V*, E)
with [V3=2"-1. By induction hypothesis,
SSEN_to_PSEN(G') and SSEN_to_PSEN(G?) return
PSEN-graph, respectively. Therefore, by definition
2, we conclude that the algorithm SSEN_to_PSEN
returns PSEN-graph (i.e, PSEN(G) is true). O

(Theorem 3) The running time of the algorithm
SSEN_to_PSEN is 0(NlogN)

(Proof) Since the partitioning produces two

groups of size 7N and step Sl requires B(N), the

recurrence is T(N):ZT(—IZ\—]HB(N), which by the
Master Theorem[14] has solution T(N) = B(Nlog

N). Therefore, the running time of the algorithm
SSEN_to_PSEN is 8(NlogN). [

3.2 An example for 16-processor PSEN

As an example, consider a 16-processor SSEN.,
The algorithm SSEN_to_PSEN
following way in order to establish additional links.

is used in the
*«Step S1 renumbers the logical index of each
processor. Here the logical index of each processor
is identical with physical index (straightforward
mapping).
eIn step S2.1, for 0 < ¢ < 7 and { = odd (for a
low group), vector(0001) of shuffle-in port produces

vector(0100) of shuffle-out port, vector(0011) produces
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vector(0101) and vector(0101) produces vector(0110),
for additional Thus the
additional links for the low group are connected

links, respectively.
between the following pairs:
Pi - Ps P3 - Ps Ps - Ps
Using these additional links, the low group can
be a complete 8-processor SSEN (see Figure 3:L).
«In step S22, for 9 < { < 15 and { = even (for
vector(1010)
produces vector(1001) for shuffle-out port for an

a high group), of shuffle-in port
additional connection. Vector(1100) produces vector
(1010) and vector(1110) vector(1011),
respectively. Thus the additional links for the high

produces

group are connected between the following pairs:
Po-Ps Pz-Po Pu-Pu
The high group can be another 8-processor SSEN
using these additional links (see Figure 3: H).
«Step S3 a PSEN-graph with six
additional links in addition to an SSEN-graph.
Therefore, this PSEN can be
partitioned into independent sub-SSENs of various

returns
16-processor

size, powers of two(24 and 8). Figure 3 shows the
16-processor PSEN for a pértitioning of various
size. In Figure 3, 16-processors are divided into
based on high and

numbers. Each group also can be divided into

two groups, low physical
independent subgroups of various sizes by recursion
(see smaller boxes). Each number indicates the
physical number: L- and H- indicate low and high
group logical numbers respectively. Thick lines
show the additional links and dashed lines show
the duplicated link or connection itself. Here, low
indexed group (see box L) shows a complete
8-processor SSEN with three additional links after
a partition. For an easy understanding, Table 1
shows the connections of a 16-processor PSEN with
six additional links which are represented by letter e.

Figure 4 illustrates a PSEN-graph with |[V] = 16,
where thick lines indicate the additional links. Here,
L: and H: indicate the low and high logical group
numbers, respectively. This figure shows that two
copies of SSEN(8) can be mapped onto PSEN(16)

with six additional links.

Table 1 Connection table of a 16-processor PSEN
PE [Po |P1 |P2 [P3 [P4 |Ps [Ps {P7 [Ps |Ps [Pio [P |Pr2|Pia[Pua[Prs
Po
Py |x X
P X
P3 X X
Pa e X
Ps e (X X
Pg e X
Py X X
Pg X
Pg X X e
P1o e
Py X X e
P2 X
Pig X |x
Pia x
P15 X

Fig 3 Partitioning the 16-processor PSEN with six
additional links. Thick lines show the additional
links
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PSEN(16)
Fig 4 16-processor PSEN-graph

4. Comparison to other networks

This  section discusses the criteria that
characterize the cost and performance of static
networks.

4.1 Comparison of the cost

Many criteria can be used to evaluate the cost of
a network, One way of defining the cost of a
network is in terms of the number of
communication links required by the network[1,49].
Here, the PSEN is

network since it is the most popular network for

compared with hypercube

multicomputers.

Table 2 shows that the average number of links
per processor (Links/Processor) and the total cost
of the PSEN (Total Cost) which result from our
simulation for n < 11 In Table 2, saved the
number of links indicates the difference of the total
PSEN and the
Hypercube network. Here, the total number of links
of the PSEN is always smaller than that of the
hypercube network. Theorem 4 demonstrates that
the cost of the PSEN is always smaller than that
of a hypercube network. Thus according to this

number of links between the

cost criteria, the PSEN is less expensive than a
hypercube network even when some additional links
are added to allow for partitioning. Even though
the PSEN is less expensive than the hypercube, it
is not always superior to the hypercube network,
because the hypercube network is better than other
criteria such as regularity(or modularity) and the

fault-tolerance. We must tradeoffs and select a
network on the basis of both the cost and its
intended applications.

(Theorem 4) The total number of links of the
PSEN is always smaller than that of the hypercube
network.

(Proof) H(n) = n2"" is the cost of the hypercube
[5]. Let P(n) denote an upper bound for the cost of
PSEN, where P(n) = exchange_links + shuffle_links
+ additional_links (or extra_links). Now we try to
show that P(n) < H(n). We clearly know that
exchange_links is 2" and shuffle_links is 2" -2 by
our definition (see Section 2). Consider the sum of
additional_links by applying the algorithm SSEN_
to_PSEN. Each step in S2 needs at most (2'-2)
links. By
algorithm, the total number of additional_links is

Y extra _links = 2; 212 —2)
_ n-1 13 5
=(n-3)2""'-Y""2
=(n-3)2"" (2" -2)
=p2"=3.27 — 22 4 g,
Thus P(n)=2""+2"-2+n2""=3.2"" =272 42

additional applying our recurrence

=p2" 22
Clearly P(n) < H(n).
]
Table 2 Comparisons between PSEN and Hypercube
PSEN Hypercube
Avg. # of Avg. # of Sa"ﬁd
N(n) |Links per Total | 141Ks per Total | namber
Processor Cost Processor Cost | of links
3(3) 2.50 10 3 12 2
16(4) 3.38 27 4 32 5
32(5) 4.38 70 5 80 10
64(6) 5.34 171 6 192 21
128(7) 6.34 406 7 448 42
256(8) 7.34 939 8 1024 85
512(9) 8.34 2134 9 2304 170
1024(10) 9.33 4779 10 5120 341
2048(11) 10.33 10582 11 11264 682

4.2 Comparison of the other characteristics

This section discusses criteria which are the
number of nodes, bisection width of the network
and the number of edges per node.

The bisection width of a network is the defined
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as the minimum number of communication links
that have to be removed to partition the network
into two equal halves. It is a good measure of the
overall bandwidth of the network. High bisection
width is better. The bisection width of a network
should scale close to linearly with the number of
processors for a scalable network. If the bisection
width does not scale well, the interconnection
network will become a bottleneck as the number of
processors is increased. Here, Butterfly network
clearly provides the best bisection width.

It is the best if the number of edges per node is
a constant independent of the network size, because
then the network scales more easily to systems
with large numbers of nodes. The hypercube is
noteworthy as the only network in which the
number of edges per node is an increasing function
of the network size.

Table 3 Comparison of size, bisection width, and

constant number of edges

Network |SIZE(N)|Bisection Width [Constant # of links
Bufferfly |(n+1)-2" 2" YES
HyperCube| 2" ! NO
3-D mesh n® n’ YES

PSEN 2 ! YES

Various characteristics of the compared networks
are shown in Table 3. Figures 5 and 6 show a plot
of the bisection width of various networks with
respect to the number of processors and the
network size, respectively.

szew

Fig 5 Comparison of network size with respect to n

Bisaction Width

———t——— Butterty
———e——  HyperCubn
—c@eae= 3D mesn
—mamie pgEN

3 . s s 7

{m)
Fig 6 Comparison of the bisection width with respect

to n for various network

5. Conclusions

This paper has focused on constructing the
Partitionable Shuffle-Exchange Network, which
includes the additional links for the partitioning of a
Single-Stage  Shuffle-Exchange Network. The
algorithm SSEN_to PSEN transforms an SSEN into
a PSEN by adding a few additional links, but only
when N = 16. This PSEN uses less hardware than
a hypercube network even when a few additional links
are added. Since the partitionable multiprocessor
machine is a parallel processing system which can
be dynamically reconfigured to operate as one or
more independent virtual multiprocessor machines of
various sizes, the PSEN is obviously applicable to a
partitionable multiprocessor system. Therefore, a
system using the PSEN can treat the various
problems of multiple users simultaneously such that
processing is possible in  a

more - efficient

multiprocessor system.
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