• Title/Summary/Keyword: Single-Phase transformer

Search Result 211, Processing Time 0.047 seconds

A Transformer protective Relaying Algorithm Based on Increment of Flux Linkages (쇄교자속비를 이용한 변압기 보호 알고리즘)

  • Kang, Y.C.;Lee, B.E.;Jin, E.S.;Won, S.H.;Lim, U.J.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.53-55
    • /
    • 2003
  • This paper propose a transformer protective relaying algorithm based on the increment of flux linkages (RIFL) of the Primary and secondary windings. The RIFL is equal to the turn ratio for all operating conditions except an internal faults. For a single-phase transformer and three-phase Y-Y transformer, the increments of flux linkages are calculated and their ratios are compared with the turn ratio. For a three-phase Y-$\triangle$ transformer, the difference of the increments of flux linkages are calculated to use the line currents instead of the delta winding currents, which are practically unavailable. Their ratios are compared with the turn ratio. The results of various tests show that the algorithm successfully discriminates internal faults from normal operation conditions such as magnetic inrush and overexcitation. The algorithm can not only detect internal winding faults, but reduce the relay's operating time.

  • PDF

A Three-Winding Transformer Protective Relaying Algorithm Based on Flux Linkages Ratio (쇄교자속비를 이용한 3권선 변압기 보호 알고리즘)

  • Kang, Y.C.;Lee, B.E.;Jin, E.S.;Won, S.H.;Lim, U.J.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.341-344
    • /
    • 2003
  • This paper proposes a tree-winding transformer protective relaying algorithm based on the ratio of increment of flux linkages (RIFL). The RIFL of the two windings is equal to the turns ratio for all operating conditions except an internal faults. For a single-phase transformer and three-phase transformer containing the wye-connected windings, the increments of flux linkages are calculated. for a three-phase transformer containing the delta-connected windings, the difference of the increments of flux linkages between the two phases are calculated using the line currents, because the winding currents are practically unavailable. Their ratios are compared with the turns ratio. The results of various tests show that the algorithm successfully discriminates internal faults from normal operation conditions such as magnetic inrush, overexcitation and external faults. The algorithm can not only detect internal winding faults, but reduce the operating time of a relay.

  • PDF

The study of Method for the Diagnosis of Transformers Trouble

  • Song, Jae-Tae;Jeong, Seung-Cheol;Choi, Hyun-Seob;Park, Poo-Gyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.118.1-118
    • /
    • 2001
  • In this paper, we suggest a new distribution model for a single phase transformer which is different from the existing model which was modeled for only primary parts, but new distribution model is modeled for primary and secondary parts. Using this model, we simulate various faults of the transformer to know how the transfer function vary from the normal one, i.e., the trend of the variation of transfer function. As an another approach, we measure the voltage and current of a three phase transformer while various faults are made at the transformer. From the simulation of the model and experiment, we fine some trends of the variation of transfer function.

  • PDF

A Transformer Protection Relay Based on Induced Voltages

  • Kang, Yong-Cheol;Lee, Byung-Eun
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.2
    • /
    • pp.70-78
    • /
    • 2003
  • This paper describes a transformer protection relay based on induced voltages. The ratio of the induced voltages of the primary and secondary windings is equal to the turns ratio during normal operating conditions such as magnetic inrush, overexcitation, and steady state, but it differs from the turns ratio in the case of internal faults. For a single-phase and a three-phase Y-Y transformer, the induced voltages are estimated and the ratios are compared with the turns ratio. For three-phase Y-Δ transformers, the differences between the induced voltages are estimated to use the line currents because delta-winding currents are practically unavailable. The proposed relay is tested under various conditions such as magnetic inrush, internal winding faults, overexcitation, and different core characteristics. The results evidently indicate that the relay successfully discriminates internal faults from magnetic inrush and overexcitation. This paper concludes by implementing the relay into a TMS320C6701 digital signal processor and reports satisfactory results. The relay requires no hysteresis data and can reduce the operating time of a relay.

Design and Fabricate a 1 MVA Single Phase HTS Transformer with Four Parallel Pancake Windings (4병렬 팬케이크 권선을 사용한 1 MVA 단상 고온초전도 변압기의 설계 및 제작)

  • Kim, Woo-Seok;Kim, Sung-Hooon;Lee, Sang-Jin;Choi, Kyeong-Dai;Joo, Hyeong-Gil;Hong, Gye-Won;Han, Jin-Ho;Hahn, Song-Yop;Park, Jung-Ho;Song, Hee-Suck
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.723-725
    • /
    • 2003
  • The result of design and Partial fabrication of a 1 MVA single phase high temperature superconducting(HTS) transformer for power distributions are presented in this paper. The HTS windings are wound as double pancake windings which have advantages of uniform distribution of high voltage over the windings. the rated primary and secondary voltages are 22.9 kV and 6.6 kV respectively. Four HTS tapes are wound in parallel for secondary windings considering the rated currents of the transformer. The HTS windings will be cooled down to 65 K by natural convection of sub-cooled liquid nitrogen using a single-staged GM-cryocooler in order to make the stability of the HTS windings better. The iron core is designed as shell type and isolated from the liquid nitrogen by an FRP cryostat which have a room temperature bore. After the complete fabrication of the total HTS transformer system, performance test of the transformer will be carried out.

  • PDF

Implementation of Voltage Sag/Swell Compensator using Direct Power Conversion (직접전력변환 방식을 이용한 전압 강하/상승 보상기의 구현)

  • Lee, Sang-Hoey;Cha, Han-Ju;Han, Byung-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1544-1550
    • /
    • 2009
  • In this paper, a new single phase voltage sag/swell compensator using direct power conversion is proposed. A new compensator consists of input/output filter, series transformer and direct ac-ac converter, which is a single-phase back-to-back PWM converter without dc-link capacitors. Advantages of the proposed compensator include: simple power circuit by eliminating dc link electrolytic capacitors and thereby, improved reliability and increased life time of the entire compensator; simple PWM strategy or compensating voltage sag/swell at the same time and reduced switching losses in the ac-ac converter. Further, the proposed scheme is able to adopt simple switch commutation method without requiring complex four-step commutation method that is commonly employed in the direct power conversion. Simulation and experimental results are shown to demonstrate the advantages of the new compensator and PWM strategy. A 220V, 3kVA single-phase compensator based on the digital signal processor controller is built and tested.

Assembling and Insulation Test of 1MVA Single Phase HTS Transformer for Power Distribution

  • Kim, S. H.;Kim, W. S.;Kim, J. T.;Park, K. D.;H. G. Joo;G. W. Hong;J. H. Han;Lee, S. J.;S. Hahn
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.3
    • /
    • pp.30-33
    • /
    • 2003
  • 1MVA high temperature superconducting (HTS) transformer with double pancake windings made of BSCCO-2223 HTS tapes was designed and manufactured. And prototype transformer with the same capacity was manufactured also. The each rated voltage of the HTS transformer is 22.9 kV and 6.6 kV. Four parallel BSCCO-2223 HTS tapes were wound in the double pancake windings of low voltage side. In order to distribute the currents equally in each HTS tapes, the three times transposition was performed between the double pancake windings. The windings of prototype transformer were wound using copper tape with the same size as BSCCO-2223 HTS tape. The core of the transformer was designed and manufactured as a shell type core made of laminated silicon steel plate. The several characteristics tests for the prototype transformer were performed in liquid nitrogen and insulation tests were accomplished also.

A New Simplified Vector Control For A High Performance Common-Arm IHCML Inverter (고성능 공통암 IHCML 인버터를 위한 새로운 벡터 제어 방식)

  • Song, Sung-Geun;Park, Sung-Jun;Nam, Hae-Kon;Kim, Kwang-Heon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1071-1079
    • /
    • 2007
  • In this paper, a novel space vector control method for isolated multi-level inverter using 3-phase low frequency transformers is proposed. This method is based on the simplification of the space-vector diagram of a five-level inverter using calculated table into fully programming method. The execution time of the proposed method is about same as that of the method using calculated table. Also, the proposed method is easily applied to other case level inverter. We applied this method into the 3-phase IHCML inverter using common arm. It makes possible to use a single DC power source due to employing low frequency transformers. In this inverter, the number of transformers could be reduced compare with an exiting 3-phase multi-level inverter using single phase transformer. In addition, this method generates very low harmonic distortion operation with nearly fundamental switching frequency. Finally, We tested multi-level inverter to clarify electric circuit and reasonableness through Matlab simulation and experiment by using prototype inverter.

Analysis of Transient Characteristics of a SFCL Applied Into Third-winding Transformer in a Single Line-to-ground Fault (1선 지락 사고 시 3 권선 변압기에 적용된 초전도 한류기의 동작 특성 분석)

  • Choi, Hye-Won;Choi, Hyo-Sang;Jung, Byung-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.1033-1037
    • /
    • 2013
  • Coercion transformer is commonly used in the electrical grid which in three phase of distribution system. The accident of the electrical grid is divided into a single, a double, a third line-to-ground faults and a double, a third line-to-line faults. A single line-to-ground fault accounts for nearly 75[%] among them. In this research, when a Superconducting Fault Current Limiters (SFCL) was applied to the three phase power system, operation in a single line-to-ground fault and limiting characteristics of fault current according to turns ratio of third winding were analyzed. When a single line-to-ground fault happened, secondary winding's circuit was open. Then third winding's circuit with a SFCL was closed. So fault current was limited by diverted circuit. At this time, we could find out that size of the limited fault current could be changed according to third winding rate. We confirmed that limiting operation of the fault current was carried out within one-period. These results will be utilized in adjusting the size of the SFCL.

New Single-Phase Power Converter Topology for Frequency Changing of AC Voltage

  • Jou, Hurng-Liahng;Wu, Jinn-Chang;Wu, Kuen-Der;Huang, Ting-Feng;Wei, Szu-Hsiang
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.694-701
    • /
    • 2018
  • This paper proposes a new single-phase power converter topology for changing the frequency of AC voltage. The proposed single-phase frequency converter (SFC) includes a T-type multi-level power converter (TMPC), a frequency decoupling transformer (FDT) and a digital signal processor (DSP). The TMPC can convert a 60 Hz AC voltage to a DC voltage and then convert the DC voltage to a 50 Hz AC voltage. Therefore, the output currents of the two T-type power switch arms have 50 Hz and 60 Hz components. The FDT is used to decouple the 50 Hz and 60 Hz components. The salient feature of the proposed SFC is that only one power electronic converter stage is used since the functions of the AC-DC and DC-AC power conversions are integrated into the TMPC. Therefore, the proposed SFC can simplify both the power circuit and the control circuit. In order to verify the functions of the proposed SFC, a hardware prototype is established. Experimental results verify that the performance of the proposed SFC is as expected.